菜鸟nginx源码剖析数据结构篇(九) 内存池ngx_pool_t

  • Author:Echo Chen(陈斌)

  • Email:chenb19870707@gmail.com

  • Blog:Blog.csdn.net/chen19870707

  • Date:Nov 11th, 2014

    今天是一年一度的光棍节,还没有女朋友的程序猿童鞋不妨new一个出来,内存管理一直是C/C++中最棘手的部分,远不止new/delete、malloc/free这么简单。随着代码量的递增,程序结构复杂度的提高。今天我们就一起研究一下以精巧著称的nginx的内存池。

    1.源代码位置

    头文件:http://trac.nginx.org/nginx/browser/nginx/src/core/ngx_palloc.h

    源文件:http://trac.nginx.org/nginx/browser/nginx/src/core/ngx_palloc.c

    2.数据结构定义

    先来学习一下nginx内存池的几个主要数据结构:

        ngx_pool_data_t(内存池数据块结构)

    1. 1: typedef struct {
    1. 2:     u_char               *last;       
    1. 3:     u_char               *end;
    1. 4:     ngx_pool_t           *next;
    1. 5:     ngx_uint_t            failed;
    1. 6: } ngx_pool_data_t;
    • last:是一个unsigned char 类型的指针,保存的是/当前内存池分配到末位地址,即下一次分配从此处开始。
    • end:内存池结束位置;
    • next:内存池里面有很多块内存,这些内存块就是通过该指针连成链表的,next指向下一块内存。
    • failed:内存池分配失败次数。

    ngx_pool_s(内存池头部结构)

    1. 1: struct ngx_pool_s {
    1. 2:     ngx_pool_data_t       d;
    1. 3:     size_t                max;
    1. 4:     ngx_pool_t           *current;
    1. 5:     ngx_chain_t          *chain;
    1. 6:     ngx_pool_large_t     *large;
    1. 7:     ngx_pool_cleanup_t   *cleanup;
    1. 8:     ngx_log_t            *log;
    1. 9: };
    • d:内存池的数据块;
    • max:内存池数据块的最大值;
    • current:指向当前内存池;
    • chain:该指针挂接一个ngx_chain_t结构;
    • large:大块内存链表,即分配空间超过max的情况使用;
    • cleanup:释放内存池的callback
    • log:日志信息

    由ngx_pool_data_t和ngx_pool_t组成的nginx内存池结构如下图所示:

    3.相关函数介绍

    在分析内存池方法前,需要对几个主要的内存相关函数作一下介绍:

    ngx_alloc:(只是对malloc进行了简单的封装)

    1. 1: void *
    1. 2: ngx_alloc(size_t size, ngx_log_t *log)
    1. 3: {
    1. 4:     void  *p;
    1. 5: 
    1. 6:     p = malloc(size);
    1. 7:     if (p == NULL) {
    1. 8:         ngx_log_error(NGX_LOG_EMERG, log, ngx_errno,
    1. 9:                       "malloc(%uz) failed", size);
    1. 10:     }
    1. 11: 
    1. 12:     ngx_log_debug2(NGX_LOG_DEBUG_ALLOC, log, 0, "malloc: %p:%uz", p, size);
    1. 13: 
    1. 14:     return p;
    1. 15: }

    ngx_calloc:(调用malloc并初始化为0)

    1. 1: void *
    1. 2: ngx_calloc(size_t size, ngx_log_t *log)
    1. 3: {
    1. 4:     void  *p;
    1. 5: 
    1. 6:     p = ngx_alloc(size, log);
    1. 7: 
    1. 8:     if (p) {
    1. 9:         ngx_memzero(p, size);
    1. 10:     }
    1. 11: 
    1. 12:     return p;
    1. 13: }

    ngx_memzero:

    1. 1: #define ngx_memzero(buf, n)       (void) memset(buf, 0, n)

    ngx_free :

    1. 1: #define ngx_free          free

    ngx_memalign

    1. 1: void *
    1. 2: ngx_memalign(size_t alignment, size_t size, ngx_log_t *log)
    1. 3: {
    1. 4:     void  *p;
    1. 5:     int    err;
    1. 6: 
    1. 7:     err = posix_memalign(&p, alignment, size);
    1. 8: 
    1. 9:     if (err) {
    1. 10:         ngx_log_error(NGX_LOG_EMERG, log, err,
    1. 11:                       "posix_memalign(%uz, %uz) failed", alignment, size);
    1. 12:         p = NULL;
    1. 13:     }
    1. 14: 
    1. 15:     ngx_log_debug3(NGX_LOG_DEBUG_ALLOC, log, 0,
    1. 16:                    "posix_memalign: %p:%uz @%uz", p, size, alignment);
    1. 17: 
    1. 18:     return p;
    1. 19: }
  • 这里alignment主要是针对部分unix平台需要动态的对齐,对POSIX 1003.1d提供的posix_memalign( )进行封装,在大多数情况下,编译器和C库透明地帮你处理对齐问题。nginx中通过宏NGX_HAVE_POSIX_MEMALIGN来控制;调用posix_memalign( )成功时会返回size字节的动态内存,并且这块内存的地址是alignment的倍数。参数alignment必须是2的幂,还是void指针的大小的倍数。返回的内存块的地址放在了memptr里面,函数返回值是0.

  • 4.内存池基本操作

    • 内存池对外的主要方法有:
  • 创建内存池 ngx_pool_t *  ngx_create_pool(size_t size, ngx_log_t *log);
    销毁内存池 void ngx_destroy_pool(ngx_pool_t *pool);
    重置内存池 void ngx_reset_pool(ngx_pool_t *pool);
    内存申请(对齐) void *  ngx_palloc(ngx_pool_t *pool, size_t size);
    内存申请(不对齐) void *  ngx_pnalloc(ngx_pool_t *pool, size_t size);
    内存清除 ngx_int_t  ngx_pfree(ngx_pool_t *pool, void *p);
  • 4.1 创建内存池ngx_create_pool

    ngx_create_pool用于创建一个内存池,我们创建时,传入我们的需要的初始大小:

    1. 1: ngx_pool_t *
    1. 2: ngx_create_pool(size_t size, ngx_log_t *log)
    1. 3: {
    1. 4:     ngx_pool_t  *p;
    1. 5:    
    1. 6:     //以16(NGX_POOL_ALIGNMENT)字节对齐分配size内存
    1. 7:     p = ngx_memalign(NGX_POOL_ALIGNMENT, size, log);
    1. 8:     if (p == NULL) {
    1. 9:         return NULL;
    1. 10:     }
    1. 11: 
    1. 12:     //初始状态:last指向ngx_pool_t结构体之后数据取起始位置
    1. 13:     p->d.last = (u_char *) p + sizeof(ngx_pool_t);
    1. 14:     //end指向分配的整个size大小的内存的末尾
    1. 15:     p->d.end = (u_char *) p + size;
    1. 16:    
    1. 17:     p->d.next = NULL;
    1. 18:     p->d.failed = 0;
    1. 19: 
    1. 20:     size = size - sizeof(ngx_pool_t);
    1. 21:     //#define NGX_MAX_ALLOC_FROM_POOL  (ngx_pagesize - 1),内存池最大不超过4095,x86中页的大小为4K
    1. 22:     p->max = (size < NGX_MAX_ALLOC_FROM_POOL) ? size : NGX_MAX_ALLOC_FROM_POOL;
    1. 23: 
    1. 24:     p->current = p;
    1. 25:     p->chain = NULL;
    1. 26:     p->large = NULL;
    1. 27:     p->cleanup = NULL;
    1. 28:     p->log = log;
    1. 29: 
    1. 30:     return p;
    1. 31: }
  • nginx对内存的管理分为大内存与小内存,当某一个申请的内存大于某一个值时,就需要从大内存中分配空间,否则从小内存中分配空间。

  • nginx中的内存池是在创建的时候就设定好了大小,在以后分配小块内存的时候,如果内存不够,则是重新创建一块内存串到内存池中,而不是将原有的内存池进行扩张。当要分配大块内存是,则是在内存池外面再分配空间进行管理的,称为大块内存池。

  • 4.2 内存申请 ngx_palloc

    1. 1: void *
    1. 2: ngx_palloc(ngx_pool_t *pool, size_t size)
    1. 3: {
    1. 4:     u_char      *m;
    1. 5:     ngx_pool_t  *p;
    1. 6: 
    1. 7:     //如果申请的内存大小小于内存池的max值
    1. 8:     if (size <= pool->max) {
    1. 9: 
    1. 10:         p = pool->current;
    1. 11: 
    1. 12:         do {
    1. 13:             //对内存地址进行对齐处理
    1. 14:             m = ngx_align_ptr(p->d.last, NGX_ALIGNMENT);
    1. 15: 
    1. 16:             //如果当前内存块够分配内存,则直接分配
    1. 17:             if ((size_t) (p->d.end - m) >= size)
    1. 18:             {
    1. 19:                 p->d.last = m + size;
    1. 20: 
    1. 21:                 return m;
    1. 22:             }
    1. 23:            
    1. 24:             //如果当前内存块有效容量不够分配,则移动到下一个内存块进行分配
    1. 25:             p = p->d.next;
    1. 26: 
    1. 27:         } while (p);
    1. 28: 
    1. 29:         //当前所有内存块都没有空闲了,开辟一块新的内存,如下2详细解释
    1. 30:         return ngx_palloc_block(pool, size);
    1. 31:     }
    1. 32: 
    1. 33:     //分配大块内存
    1. 34:     return ngx_palloc_large(pool, size);
    1. 35: }

    需要说明的几点:

    1、ngx_align_ptr,这是一个用来内存地址取整的宏,非常精巧,一句话就搞定了。作用不言而喻,取整可以降低CPU读取内存的次数,提高性能。因为这里并没有真正意义调用malloc等函数申请内存,而是移动指针标记而已,所以内存对齐的活,C编译器帮不了你了,得自己动手。

    1. 1: #define ngx_align_ptr(p, a)                                                   \
    1. 2:      (u_char *) (((uintptr_t) (p) + ((uintptr_t) a - 1)) & ~((uintptr_t) a - 1))

    2、开辟一个新的内存块 ngx_palloc_block(ngx_pool_t *pool, size_t size)

    这个函数是用来分配新的内存块,为pool内存池开辟一个新的内存块,并申请使用size大小的内存;

    1. 1: static void *
    1. 2: ngx_palloc_block(ngx_pool_t *pool, size_t size)
    1. 3: {
    1. 4:     u_char      *m;
    1. 5:     size_t       psize;
    1. 6:     ngx_pool_t  *p, *new;
    1. 7: 
    1. 8:     //计算内存池第一个内存块的大小
    1. 9:     psize = (size_t) (pool->d.end - (u_char *) pool);
    1. 10: 
    1. 11:     //分配和第一个内存块同样大小的内存块
    1. 12:     m = ngx_memalign(NGX_POOL_ALIGNMENT, psize, pool->log);
    1. 13:     if (m == NULL) {
    1. 14:         return NULL;
    1. 15:     }
    1. 16: 
    1. 17:     new = (ngx_pool_t *) m;
    1. 18: 
    1. 19:     //设置新内存块的end
    1. 20:     new->d.end = m + psize;
    1. 21:     new->d.next = NULL;
    1. 22:     new->d.failed = 0;
    1. 23: 
    1. 24:     //将指针m移动到d后面的一个位置,作为起始位置
    1. 25:     m += sizeof(ngx_pool_data_t);
    1. 26:     //对m指针按4字节对齐处理
    1. 27:     m = ngx_align_ptr(m, NGX_ALIGNMENT);
    1. 28:     //设置新内存块的last,即申请使用size大小的内存
    1. 29:     new->d.last = m + size;
    1. 30: 
    1. 31:     //这里的循环用来找最后一个链表节点,这里failed用来控制循环的长度,如果分配失败次数达到5次,就忽略,不需要每次都从头找起
    1. 32:     for (p = pool->current; p->d.next; p = p->d.next) {
    1. 33:         if (p->d.failed++ > 4) {
    1. 34:             pool->current = p->d.next;
    1. 35:         }
    1. 36:     }
    1. 37: 
    1. 38:     p->d.next = new;
    1. 39: 
    1. 40:     return m;
    1. 41: }
  • 3、分配大块内存 ngx_palloc_large(ngx_pool_t *pool, size_t size)

    ngx_palloc中首先会判断申请的内存大小是否超过内存块的最大限值,如果超过,则直接调用ngx_palloc_large,进入大内存块的分配流程;

    1. 1: static void *
    1. 2: ngx_palloc_large(ngx_pool_t *pool, size_t size)
    1. 3: {
    1. 4:     void              *p;
    1. 5:     ngx_uint_t         n;
    1. 6:     ngx_pool_large_t  *large;
    1. 7: 
    1. 8:     // 直接在系统堆中分配一块大小为size的空间
    1. 9:     p = ngx_alloc(size, pool->log);
    1. 10:     if (p == NULL) {
    1. 11:         return NULL;
    1. 12:     }
    1. 13: 
    1. 14:     n = 0;
    1. 15: 
    1. 16:     // 查找到一个空的large区,如果有,则将刚才分配的空间交由它管理 
    1. 17:     for (large = pool->large; large; large = large->next) {
    1. 18:         if (large->alloc == NULL) {
    1. 19:             large->alloc = p;
    1. 20:             return p;
    1. 21:         }
    1. 22:         //为了提高效率, 如果在三次内没有找到空的large结构体,则创建一个
    1. 23:         if (n++ > 3) {
    1. 24:             break;
    1. 25:         }
    1. 26:     }
    1. 27: 
    1. 28: 
    1. 29:     large = ngx_palloc(pool, sizeof(ngx_pool_large_t));
    1. 30:     if (large == NULL) {
    1. 31:         ngx_free(p);
    1. 32:         return NULL;
    1. 33:     }
    1. 34:    
    1. 35:     //将large链接到内存池
    1. 36:     large->alloc = p;
    1. 37:     large->next = pool->large;
    1. 38:     pool->large = large;
    1. 39: 
    1. 40:     return p;
    1. 41: }
    整个内存池分配如下图:
    • 4.3 内存池重置 ngx_reset_pool

    1. 1: void
    1. 2: ngx_reset_pool(ngx_pool_t *pool)
    1. 3: {
    1. 4:     ngx_pool_t        *p;
    1. 5:     ngx_pool_large_t  *l;
    1. 6:    
    1. 7:     //释放大块内存
    1. 8:     for (l = pool->large; l; l = l->next) {
    1. 9:         if (l->alloc) {
    1. 10:             ngx_free(l->alloc);
    1. 11:         }
    1. 12:     }
    1. 13:    
    1. 14:     // 重置所有小块内存区
    1. 15:     for (p = pool; p; p = p->d.next) {
    1. 16:         p->d.last = (u_char *) p + sizeof(ngx_pool_t);
    1. 17:         p->d.failed = 0;
    1. 18:     }
    1. 19: 
    1. 20:     pool->current = pool;
    1. 21:     pool->chain = NULL;
    1. 22:     pool->large = NULL;
    1. 23: }

    4.4 内存池释放 ngx_pfree

    1. 1: ngx_int_t
    1. 2: ngx_pfree(ngx_pool_t *pool, void *p)
    1. 3: {
    1. 4:     ngx_pool_large_t  *l;
    1. 5: 
    1. 6:     //只检查是否是大内存块,如果是大内存块则释放
    1. 7:     for (l = pool->large; l; l = l->next) {
    1. 8:         if (p == l->alloc) {
    1. 9:             ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, pool->log, 0,
    1. 10:                            "free: %p", l->alloc);
    1. 11:             ngx_free(l->alloc);
    1. 12:             l->alloc = NULL;
    1. 13: 
    1. 14:             return NGX_OK;
    1. 15:         }
    1. 16:     }
    1. 17: 
    1. 18:     return NGX_DECLINED;
    1. 19: }

    所以说Nginx内存池中大内存块和小内存块的分配与释放是不一样的。我们在使用内存池时,可以使用ngx_palloc进行分配,使用ngx_pfree释放。而对于大内存,这样做是没有问题的,而对于小内存就不一样了,分配的小内存,不会进行释放。因为大内存块的分配只对前3个内存块进行检查,否则就直接分配内存,所以大内存块的释放必须及时。

    4.5 外部资源的清理

    Nginx内存池支持通过回调函数,对外部资源的清理。ngx_pool_cleanup_t是回调函数结构体,它在内存池中以链表形式保存,在内存池进行销毁时,循环调用这些回调函数对数据进行清理。

    1. 1: typedef struct ngx_pool_cleanup_s  ngx_pool_cleanup_t;
    1. 2: 
    1. 3: struct ngx_pool_cleanup_s {
    1. 4:     ngx_pool_cleanup_pt   handler;
    1. 5:     void                 *data;
    1. 6:     ngx_pool_cleanup_t   *next;
    1. 7: };

    其中

    • handler:是回调函数指针;
    • data:回调时,将此数据传入回调函数;

    next://指向下一个回调函数结构体;

    如果我们需要添加自己的回调函数,则需要调用ngx_pool_cleanup_add来得到一个ngx_pool_cleanup_t,然后设置handler为我们的清理函数,并设置data为我们要清理的数据。这样在ngx_destroy_pool中会循环调用handler清理数据;

    1. 1: ngx_pool_cleanup_t *
    1. 2: ngx_pool_cleanup_add(ngx_pool_t *p, size_t size)
    1. 3: {
    1. 4:     ngx_pool_cleanup_t  *c;
    1. 5:    
    1. 6:     //分配ngx_pool_cleanup_t
    1. 7:     c = ngx_palloc(p, sizeof(ngx_pool_cleanup_t));
    1. 8:     if (c == NULL) {
    1. 9:         return NULL;
    1. 10:     }
    1. 11: 
    1. 12:     //给data分配内存
    1. 13:     if (size) {
    1. 14:         c->data = ngx_palloc(p, size);
    1. 15:         if (c->data == NULL) {
    1. 16:             return NULL;
    1. 17:         }
    1. 18: 
    1. 19:     } else {
    1. 20:         c->data = NULL;
    1. 21:     }
    1. 22: 
    1. 23:     //将回掉函数链入内存池
    1. 24:     c->handler = NULL;
    1. 25:     c->next = p->cleanup;
    1. 26: 
    1. 27:     p->cleanup = c;
    1. 28: 
    1. 29:     ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, p->log, 0, "add cleanup: %p", c);
    1. 30: 
    1. 31:     return c;
    1. 32: }

    比如:我们可以将一个开打的文件描述符作为资源挂载到内存池上,同时提供一个关闭文件描述的函数注册到handler上,那么内存池在释放的时候,就会调用我们提供的关闭文件函数来处理文件描述符资源了。

  • 4.6 内存池销毁 ngx_destroy_pool

    1. 1: void
    1. 2: ngx_destroy_pool(ngx_pool_t *pool)
    1. 3: {
    1. 4:     ngx_pool_t          *p, *n;
    1. 5:     ngx_pool_large_t    *l;
    1. 6:     ngx_pool_cleanup_t  *c;
    1. 7: 
    1. 8:     //依次调用外部析构回调函数
    1. 9:     for (c = pool->cleanup; c; c = c->next) {
    1. 10:         if (c->handler) {
    1. 11:             ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, pool->log, 0,
    1. 12:                            "run cleanup: %p", c);
    1. 13:             c->handler(c->data);
    1. 14:         }
    1. 15:     }
    1. 16:    
    1. 17:     //释放大块内存
    1. 18:     for (l = pool->large; l; l = l->next) {
    1. 19: 
    1. 20:         ngx_log_debug1(NGX_LOG_DEBUG_ALLOC, pool->log, 0, "free: %p", l->alloc);
    1. 21: 
    1. 22:         if (l->alloc) {
    1. 23:             ngx_free(l->alloc);
    1. 24:         }
    1. 25:     }
    1. 26:     //释放小块内存
    1. 27:     for (p = pool, n = pool->d.next; /* void */; p = n, n = n->d.next) {
    1. 28:         ngx_free(p);
    1. 29: 
    1. 30:         if (n == NULL) {
    1. 31:             break;
    1. 32:         }
    1. 33:     }
    1. 34: }

    5.参考资料

    1.http://www.cnblogs.com/xiekeli/archive/2012/10/17/2727432.html

    2.《深入理解Nginx》

  • -Echo Chen

  • Blog.csdn.net/chen19870707

  • -

菜鸟nginx源码剖析数据结构篇(九) 内存池ngx_pool_t[转]的更多相关文章

  1. 菜鸟nginx源码剖析数据结构篇(十一) 共享内存ngx_shm_t[转]

    菜鸟nginx源码剖析数据结构篇(十一) 共享内存ngx_shm_t Author:Echo Chen(陈斌) Email:chenb19870707@gmail.com Blog:Blog.csdn ...

  2. 菜鸟nginx源码剖析数据结构篇(十) 自旋锁ngx_spinlock[转]

    菜鸟nginx源码剖析数据结构篇(十) 自旋锁ngx_spinlock Author:Echo Chen(陈斌) Email:chenb19870707@gmail.com Blog:Blog.csd ...

  3. 菜鸟nginx源码剖析数据结构篇(八) 缓冲区链表ngx_chain_t[转]

    菜鸟nginx源码剖析数据结构篇(八) 缓冲区链表 ngx_chain_t Author:Echo Chen(陈斌) Email:chenb19870707@gmail.com Blog:Blog.c ...

  4. 菜鸟nginx源码剖析数据结构篇(七) 哈希表 ngx_hash_t(下)[转]

    菜鸟nginx源码剖析数据结构篇(七) 哈希表 ngx_hash_t(下) Author:Echo Chen(陈斌) Email:chenb19870707@gmail.com Blog:Blog.c ...

  5. 菜鸟nginx源码剖析数据结构篇(六) 哈希表 ngx_hash_t(上)[转]

    菜鸟nginx源码剖析数据结构篇(六) 哈希表 ngx_hash_t(上) Author:Echo Chen(陈斌) Email:chenb19870707@gmail.com Blog:Blog.c ...

  6. 菜鸟nginx源码剖析数据结构篇(五) 基数树 ngx_radix_tree_t[转]

    菜鸟nginx源码剖析数据结构篇(五) 基数树 ngx_radix_tree_t Author:Echo Chen(陈斌) Email:chenb19870707@gmail.com Blog:Blo ...

  7. 菜鸟nginx源码剖析数据结构篇(四)红黑树ngx_rbtree_t[转]

    菜鸟nginx源码剖析数据结构篇(四)红黑树ngx_rbtree_t Author:Echo Chen(陈斌) Email:chenb19870707@gmail.com Blog:Blog.csdn ...

  8. 菜鸟nginx源码剖析数据结构篇(三) 单向链表 ngx_list_t[转]

    菜鸟nginx源码剖析数据结构篇(三) 单向链表 ngx_list_t Author:Echo Chen(陈斌) Email:chenb19870707@gmail.com Blog:Blog.csd ...

  9. 菜鸟nginx源码剖析数据结构篇(一)动态数组ngx_array_t[转]

    菜鸟nginx源码剖析数据结构篇(一)动态数组ngx_array_t Author:Echo Chen(陈斌) Email:chenb19870707@gmail.com Blog:Blog.csdn ...

随机推荐

  1. spark1.0.2读取hbase(CDH0.96.1)上的数据

    基本环境: 我是在win7环境下,spark1.0.2,HBase0.9.6.1 使用工具:IDEA14.1, scala 2.11.6, sbt.我现在是测试环境使用的是单节点 1.使用IDEA创建 ...

  2. Array类型中的检测数组,转换方法,栈方法,队列方法

    我的新博客==> http://www.suanliutudousi.com/2017/08/24/array%E7%B1%BB%E5%9E%8B%E4%B8%AD%E7%9A%84%E6%A3 ...

  3. 3.2_springBoot2.1.x检索之JestClient操作ElasticSearch

    这里介绍Jest方式交互, 导入jest版本 <!--导入jest--> <dependency> <groupId>io.searchbox</groupI ...

  4. mycat-zookeepr--mycatweb

    ##############################mycat镜像############################## 5-1 创mycat镜像 wget http://dl.myca ...

  5. Linux CPU负载状态:%us/%sy/%ni/%id/%wa/%hi/%si/%st含义

    原文 Linux CPU负载状态:%us/%sy/%ni/%id/%wa/%hi/%si/%st含义 缙哥哥发现用了雅黑的探针,在 Linux 的 CPU 状态信息中发现,有“%us.%sy.%ni. ...

  6. pip修改官方源为豆瓣源

    参考地址: https://www.jianshu.com/p/10a23d6a93c6 1.临时修改 pip install pythonModuleName -i https://pypi.dou ...

  7. 2019-7-3-Roslyn-在项目文件使用条件判断

    title author date CreateTime categories Roslyn 在项目文件使用条件判断 lindexi 2019-7-3 17:7:32 +0800 2018-8-3 2 ...

  8. phonegap 开发指南系列(3) ----在Eclipse中Android开发环境搭建

      前提条件:已在Eclipse中安装好Android SDK 和 ADT. 1.下载PhoneGap,解压. 2.用Eclipse新建一个安卓项目. 3.将phoneGap解压包里的Android文 ...

  9. scala中Array简单实用

    /** * 在scala中数组的使用 * 和java很类似,初始化后,长度就固定了,而且元素全部根据其类型初始化 * */ object arrayUse { def main(args: Array ...

  10. luoguP1890 gcd区间 [st表][gcd]

    题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m. 第二行n个整数表 ...