题目大意:

给定三角形的三点坐标

判断在其内部包含多少个整点

题解及讲解

皮克定理

多边形面积s = 其内部整点in + 其边上整点li / 2 - 1

那么求内部整点就是 in = s + 1 - li / 2

网格中两格点(整点)间经过的格点(整点)数 即边上整点

li +1=两点横向和纵向距离的最大公约数

//求线段ab之间的整点数
int lineSeg(P a,P b) {
int dx=abs(a.x-b.x), dy=abs(a.y-b.y);
if(dx== && dy==) return ;
return gcd(dx,dy)-;
}
#include <cstdio>
#include <string.h>
#include <algorithm>
#include <cmath>
using namespace std; double eps=1e-;
double add(double a,double b) {
if(abs(a+b)<eps*(abs(a)+abs(b))) return ;
return a+b;
}
struct P {
double x,y;
P(){};
P(double _x,double _y):x(_x),y(_y){};
P operator - (P p) {
return P(add(x,-p.x),add(y,-p.y)); }
P operator + (P p) {
return P(add(x,p.x),add(y,p.y)); }
P operator * (double d) {
return P(x*d,y*d); }
double dot (P p) {
return add(x*p.x,y*p.y); }
double det (P p) {
return add(x*p.y,-y*p.x); }
}a,b,c;
double area(P a,P b,P c) {
return abs((a-c).det(b-c))/;
}
int gcd(int a,int b) {
while(b) {
int t=a%b;
a=b; b=t;
} return a;
}
//求线段ab之间的整点数
int lineSeg(P a,P b) {
int dx=abs(a.x-b.x), dy=abs(a.y-b.y);
if(dx== && dy==) return ;
return gcd(dx,dy)-;
} int main()
{
while(~scanf("%lf%lf%lf%lf%lf%lf"
,&a.x,&a.y,&b.x,&b.y,&c.x,&c.y)) {
if(a.x==a.y && b.x==b.y && c.x==c.y
&& a.x==b.x && b.x==c.x && c.x==) break;
int s=area(a,b,c);
int li=lineSeg(a,b)+lineSeg(a,c)+lineSeg(b,c)+;
// +3 是 加上三角形的三个顶点
printf("%d\n",s+-li/); /// 皮克定理
} return ;
}

POJ 2954 /// 皮克定理+叉积求三角形面积的更多相关文章

  1. hdu 4709:Herding(叉积求三角形面积+枚举)

    Herding Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  2. Area POJ - 1265 -皮克定理-叉积

    Area POJ - 1265 皮克定理是指一个计算点阵中顶点在格点上的多边形面积公式,该公式可以表示为2S=2a+b-2, 其中a表示多边形内部的点数,b表示多边形边界上的点数,S表示多边形的面积. ...

  3. POJ - 1654 利用叉积求三角形面积 去 间接求多边形面积

    题意:在一个平面直角坐标系,一个点总是从原点出发,但是每次移动只能移动8个方向的中的一个并且每次移动距离只有1和√2这两种情况,最后一定会回到原点(以字母5结束),请你计算这个点所画出图形的面积 题解 ...

  4. hdu 2036:改革春风吹满地(叉积求凸多边形面积)

    改革春风吹满地 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  5. UVa 11437:Triangle Fun(计算几何综合应用,求直线交点,向量运算,求三角形面积)

    Problem ATriangle Fun Input: Standard Input Output: Standard Output In the picture below you can see ...

  6. TZOJ 2519 Regetni(N个点求三角形面积为整数总数)

    描述 Background Hello Earthling. We're from the planet Regetni and need your help to make lots of mone ...

  7. Maximal Area Quadrilateral CodeForces - 340B || 三点坐标求三角形面积

    Maximal Area Quadrilateral CodeForces - 340B 三点坐标求三角形面积(可以带正负,表示向量/点的不同相对位置): http://www.cnblogs.com ...

  8. Area---poj1265(皮克定理+多边形求面积)

    题目链接:http://poj.org/problem?id=1265 题意是:有一个机器人在矩形网格中行走,起始点是(0,0),每次移动(dx,dy)的偏移量,已知,机器人走的图形是一个多边形,求这 ...

  9. POJ 1265 /// 皮克定理+多边形边上整点数+多边形面积

    题目大意: 默认从零点开始 给定n次x y上的移动距离 组成一个n边形(可能为凹多边形) 输出其 内部整点数 边上整点数 面积 皮克定理 多边形面积s = 其内部整点in + 其边上整点li / 2 ...

随机推荐

  1. DELPHI 数据库操作

    DELPHI 把数据库中的数据转换成XML格式 function ReplaceString(AString: string): string; begin Result := StringRepla ...

  2. docker快速安装kibana

    一.拉取镜像 docker pull kibana:5.6.9 二.启动容器 docker run --name kibana -e ELASTICSEARCH_URL=http://10.0.0.1 ...

  3. Qt5编译使用QFtp

    使用 QNetworkAccessManager 可以实现 Ftp 的上传/下载功能(参考:Qt之FTP上传/下载),但有些原本 QFtp 有的功能 QNetworkAccessManager 却没有 ...

  4. openstack nova 源码解析 — Nova API 执行过程从(novaclient到Action)

    目录 目录 Nova API Nova API 的执行过程 novaclient 将 Commands 转换为标准的HTTP请求 PasteDeploy 将 HTTP 请求路由到具体的 WSGI Ap ...

  5. 阿里云ecs(phpstudy一件包)

            选择语言       保存并连接    Linux硬盘挂载是比较常见的管理操作之一.默认情况下数据盘没有挂载,需要手动挂载到系统中.     具体操作是分三步:     硬盘挂载1)需 ...

  6. sizeof,真正终结版GCC与VC

    在VC6.0中sizeof结果是16.我电脑上装了个linux虚拟机,在虚拟机上GCC中结果是12, 恩不同编译器默认对齐数值不一样. VC 默认为 8 gcc 默认为 4 有个编译参数控制对齐. # ...

  7. LeetCode刷题笔记-递归-将有序数组转换为二叉搜索树

    题目描述 将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: 给定有序数组: [-10, ...

  8. javascript和jQuery知识点总结

    attribute: $(”p”).addClass(css中定义的样式类型); 给某个元素添加样式 $(”img”).attr({src:”test.jpg”,alt:”test Image”}); ...

  9. 2- SQL语句的强化

    查询类型cate_name为 '超极本' 的商品名称.价格 select name,price from goods where cate_name = '超级本'; 显示商品的种类 select c ...

  10. USACO2008 Roads Around The Farm /// queue oj23321

    题目大意: N (1 ≤ N ≤ 1,000,000,000)牛群在遇到岔路时,若能分为恰好相差 K (1 ≤ K ≤ 1000)的两路,则持续分裂(假设会一直遇到岔路),否则停止开始吃草. Inpu ...