黑科技之杜教bm
这个板子能够解决任何线性递推式,只要你确定某个数列的某项只与前几项线性相关,那么把它前若干项丢进去,这个板子就能给你返回你要求的某项的值。
原理???(待补充)
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=;
ll powmod(ll a,ll b) {ll res=;a%=mod; assert(b>=); for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
ll _,n;
namespace linear_seq{
const int N=;
ll res[N],base[N],_c[N],_md[N];
vector<ll> Md;
void mul(ll *a,ll *b,int k)
{
rep(i,,k+k) _c[i]=;
rep(i,,k) if (a[i]) rep(j,,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
for (int i=k+k-;i>=k;i--) if (_c[i])
rep(j,,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
rep(i,,k) a[i]=_c[i];
}
int solve(ll n,VI a,VI b)
{
ll ans=,pnt=;
int k=SZ(a);
assert(SZ(a)==SZ(b));
rep(i,,k) _md[k--i]=-a[i];_md[k]=;
Md.clear();
rep(i,,k) if (_md[i]!=) Md.push_back(i);
rep(i,,k) res[i]=base[i]=;
res[]=;
while ((1ll<<pnt)<=n) pnt++;
for (int p=pnt;p>=;p--)
{
mul(res,res,k);
if ((n>>p)&)
{
for (int i=k-;i>=;i--) res[i+]=res[i];res[]=;
rep(j,,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
}
}
rep(i,,k) ans=(ans+res[i]*b[i])%mod;
if (ans<) ans+=mod;
return ans;
}
VI BM(VI s) {
VI C(,),B(,);
int L=,m=,b=;
rep(n,,SZ(s)) {
ll d=;
rep(i,,L+) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==) ++m;
else if (*L<=n) {
VI T=C;
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+-L; B=T; b=d; m=;
} else {
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
return C;
}
int gao(VI a,ll n){
VI c=BM(a);
c.erase(c.begin());
rep(i,,SZ(c)) c[i]=(mod-c[i])%mod;
return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
};
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%lld",&n);
vector<int>v;
v.push_back(); //至少8项,越多越好。
printf("%lld\n",linear_seq::gao(v,n-)%mod);
}
}
黑科技之杜教bm的更多相关文章
- ZZNU 2182 矩阵dp (矩阵快速幂+递推式 || 杜教BM)
题目链接:http://47.93.249.116/problem.php?id=2182 题目描述 河神喜欢吃零食,有三种最喜欢的零食,鱼干,猪肉脯,巧克力.他每小时会选择一种吃一包. 不幸的是,医 ...
- 牛客多校第九场 A The power of Fibonacci 杜教bm解线性递推
题意:计算斐波那契数列前n项和的m次方模1e9 题解: $F[i] – F[i-1] – F[i-2] = 0$ $F[i]^2 – 2 F[i-1]^2 – 2 F[i-2]^2 + F[i-3] ...
- 杜教BM【转载】
https://blog.csdn.net/qq_36876305/article/details/80275708 #include <bits/stdc++.h> using name ...
- 杜教BM
#include <algorithm> #include <iterator> #include <iostream> #include <cstring& ...
- 杜教BM递推板子
Berlekamp-Massey 算法用于求解常系数线性递推式 #include<bits/stdc++.h> typedef std::vector<int> VI; typ ...
- 杜教BM模板
#include<bits/stdc++.h> using namespace std; #define rep(i,a,n) for (int i=a;i<n;i++) #defi ...
- BM求线性递推模板(杜教版)
BM求线性递推模板(杜教版) BM求线性递推是最近了解到的一个黑科技 如果一个数列.其能够通过线性递推而来 例如使用矩阵快速幂优化的 DP 大概都可以丢进去 则使用 BM 即可得到任意 N 项的数列元 ...
- [自己动手玩黑科技] 1、小黑科技——如何将普通的家电改造成可以与手机App联动的“智能硬件”
NOW, 步 将此黑科技传授予你~ 一.普通家电控制电路板分析 普通家电,其人机接口一般由按键和指示灯组成(高端的会稍微复杂,这里不考虑) 这样交互过程,其实就是:由当前指示灯信息,按照操作流程按相应 ...
- HDU 6395 Sequence 杜教板子题
题目意思非常明确,就是叫你求第n项,据我们学校一个大佬说他推出了矩阵,但是我是菜鸡,那么肯定是用简单的方法水过啦!我们先p^(1/2)的复杂度处理出i=[i,p]范围内的所有种类的(int)(p/i) ...
随机推荐
- spring boot 与微服务之间的关系
Spring Boot 和微服务没关系, Java 微服务治理框架普遍用的是 Spring Cloud. Spring Boot 产生的背景,是开发人员对 Spring 框架越来越复杂的配置吐槽越来越 ...
- Centos剔除在线用户
CentOS踢除已登录用户的方法: 1.>先按下w查看用户终端号 2.>执行pkill -kill -t pts/1 (pts/1为w指令看到的用户终端号)命令
- 锐浪报表 Grid++Report 一维码无法固定条形码打印宽度
使用过 锐浪报表的 程序员 都知道,功能很强大,确实带来了很多便利,但今天发现一个问题,关于一维码的条形码无法固定宽度: 打印相差了0.07毫米,居然差别这么大, 打印出来的条码,要么太宽,要么太窄 ...
- Comet OJ - Contest #11 E ffort(组合计数+多项式快速幂)
传送门. 题解: 考虑若最后的总伤害数是s,那么就挡板分配一下,方案数是\(C_{s-1}^{n-1}\). 那么问题在于总伤害数很大,不能一个一个的算. \(C_{s-1}^{n-1}\)的OGF是 ...
- host文件是作用
什么是HOST文件:Hosts是一个没有扩展名的系统文件,其基本作用就是将一些常用的网址域名与其对应的IP地址建立一个关联“数据库”,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Host ...
- SDNU 1217 CD收藏——并查集
Description lmh平常爱听歌,所以买了很多的CD来收藏,但是因为平常整理不当,所以忘记了这些CD的歌手是谁.现在他想知道他到底收藏了多少位歌手的专辑,于是他想了一个办法,同时拿出两 ...
- MarkDown 快速开始 上手
*:first-child { margin-top: 0 !important; } body>*:last-child { margin-bottom: 0 !important; } /* ...
- 静态成员 static 能被继承吗
在类定义中,它的成员(包括数据成员和 成员函数)可以用关键字static声明为静 态的,这些成员称为静态成员 静态成员的特性: • 不管这个类创建了多少个对象,静态成员只有一个拷贝,这个拷贝被所有属于 ...
- 前端(二十)—— vue介绍:引用vue、vue实例、实例生命周期钩子
vue 一.认识Vue 定义:一个构建数据驱动的 web 界面的渐进式框架 优点: 1.可以完全通过客户端浏览器渲染页面,服务器端只提供数据 2.方便构建单页面应用程序(SPA) 3.数据驱动 =&g ...
- Jackson第一个程序
再进入学习jackson库的细节之前,让我们来看看应用程序操作功能.在这个例子中,我们创建一个Student类.将创建一个JSON字符串学生的详细信息,并将其反序列化到学生的对象,然后将其序列化到JS ...