BZOJ 4596: [Shoi2016]黑暗前的幻想乡(容斥+Matrix_Tree)
解题思路
看到计数想容斥--\(from\) \(shadowice1984\)大爷。首先求出原图的生成树个数比较容易,直接上矩阵树定理,但这样会多算一点东西,会把\(n-2\)个公司的多算进去,那我们就减掉\(n-2\)个公司的生成树个数,然后发现少算了\(n-3\)的生成树个数...以此类推。所以就容斥一下,然后用矩阵树定理就行了。时间复杂度\(O(2^(n-1)*n^3*log(MOD)\)。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#define int long long
using namespace std;
const int MAXN = 18;
const int MOD = 1e9+7;
typedef long long LL;
inline int rd(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {f=ch=='-'?0:1;ch=getchar();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return f?x:-x;
}
struct Edge{
int u,v;
}edge[MAXN][MAXN*MAXN/2];
int m[MAXN],n,ans;
int f[MAXN][MAXN];
inline void add(int x,int y){
f[x][x]++;f[y][y]++;f[x][y]--;f[y][x]--;
}
inline int Matrix_Tree(){
int t,ret=1;
for(int i=1;i<n;i++){
for(int j=i+1;j<n;j++)
while(f[j][i]){
t=f[i][i]/f[j][i];
for(int k=i;k<n;k++) f[i][k]=(f[i][k]-(LL)t*f[j][k]%MOD+MOD)%MOD;
ret=-ret;swap(f[i],f[j]);
}
ret=(LL)ret*f[i][i]%MOD;ret=(ret+MOD)%MOD;
}
return (ret+MOD)%MOD;
}
signed main(){
n=rd();
for(int i=1;i<n;i++){
m[i]=rd();
for(int j=1;j<=m[i];j++)
edge[i][j].u=rd(),edge[i][j].v=rd();
}
for(int i=(1<<(n-1))-1;i;i--){
memset(f,0,sizeof(f));
for(int j=1;j<=n;j++)if((1<<(j-1))&i)
for(int k=1;k<=m[j];k++)
add(edge[j][k].u,edge[j][k].v);
ans+=((n-__builtin_popcount(i))&1)?(Matrix_Tree()):(-Matrix_Tree());
ans=(ans+MOD)%MOD;
}
printf("%lld",ans);
return 0;
}
BZOJ 4596: [Shoi2016]黑暗前的幻想乡(容斥+Matrix_Tree)的更多相关文章
- bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 559 Solved: 325[Submit][Sta ...
- [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)
这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...
- 【BZOJ4596】[Shoi2016]黑暗前的幻想乡 容斥+矩阵树定理
[BZOJ4596][Shoi2016]黑暗前的幻想乡 Description 幽香上台以后,第一项措施就是要修建幻想乡的公路.幻想乡有 N 个城市,之间原来没有任何路.幽香向选民承诺要减税,所以她打 ...
- BZOJ 4596: [Shoi2016]黑暗前的幻想乡
Sol 容斥原理+Matrix-Tree定理.容斥跟小星星那道题是一样的,然后...直接Matrix-Tree定理就可以了... 复杂度\(O(2^{n-1}n^3)\) PS:调了好久啊QAQ 明明 ...
- ●BZOJ 4596 [Shoi2016]黑暗前的幻想乡
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4596 题解: 容斥,矩阵树定理,矩阵行列式 先说说容斥:(一共有 N-1个公司) 令 f[i ...
- bzoj 4596: [Shoi2016]黑暗前的幻想乡【容斥原理+矩阵树定理】
真是简单粗暴 把矩阵树定理的运算当成黑箱好了反正我不会 这样我们就可以在O(n^3)的时间内算出一个无向图的生成树个数了 然后题目要求每个工程队选一条路,这里可以考虑容斥原理:全选的方案数-不选工程队 ...
- 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)
4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 324 Solved: 187 Description ...
- 【BZOJ】4596: [Shoi2016]黑暗前的幻想乡
[题意]给定n个点的无向完全图,有n-1个公司各自分管一部分路,要求所有公司都有修路的生成树数.n<=17. [算法]容斥原理+生成树计数(矩阵树定理) [题解]每个生成树方案是一个公司有无修路 ...
- 洛谷 P4336 黑暗前的幻想乡 —— 容斥+矩阵树定理
题目:https://www.luogu.org/problemnew/show/P4336 当作考试题了,然而没想出来,呵呵. 其实不是二分图完美匹配方案数,而是矩阵树定理+容斥... 就是先放上所 ...
随机推荐
- docker提示没有开启转发解决方法
vim /usr/lib/sysctl.d/00-system.conf [root@t1 ~]# vim /usr/lib/sysctl.d/00-system.conf# Kernel sysc ...
- 【leetcode】951. Flip Equivalent Binary Trees
题目如下: For a binary tree T, we can define a flip operation as follows: choose any node, and swap the ...
- vmware下搭建openwrt
最近闲来无事,想研究下openwrt, 所以尝试着自己搭建一个来玩玩, 当然这里不是以源码编译的形式,那样太耗时. 首先官网下载已有的系统image, 路径如下 : https://archive. ...
- Sqlserver复杂查询
--联表修改 update xyzrb set xyzrb.xy_card=tablsb.card from xyzrb left join tablsb on xyzrb.xybh=tablsb.x ...
- Shiro学习(3)授权
授权,也叫访问控制,即在应用中控制谁能访问哪些资源(如访问页面/编辑数据/页面操作等).在授权中需了解的几个关键对象:主体(Subject).资源(Resource).权限(Permission).角 ...
- (转)OpenFire源码学习之十四:插件管理
转:http://blog.csdn.net/huwenfeng_2011/article/details/43418433 Plugin管理 Openfire把插件模块加入到容器分为以下步骤: l ...
- 带头结点的循环单链表----------C语言
/***************************************************** Author:Simon_Kly Version:0.1 Date: 20170520 D ...
- 解决Python报错:local variable 'xxx' referenced before assignment(引)
解决Python报错:local variable 'xxx' referenced before assignment(引) 解决Python报错:local variable 'xxx' refe ...
- SpringBoot项目框架下ThreadPoolExecutor线程池+Queue缓冲队列实现高并发中进行下单业务
主要是自己在项目中(中小型项目) 有支付下单业务(只是办理VIP,没有涉及到商品库存),目前用户量还没有上来,目前没有出现问题,但是想到如果用户量变大,下单并发量变大,可能会出现一系列的问题,趁着空闲 ...
- 19、Page Object 实例
项目目录介绍: CalcuatorPage.java文件代码: package example; import io.appium.java_client.android.AndroidDriver; ...