Introduction

(1)Motivation:

监控视频中的行人,有的比较清晰,有的因为距离较远非常模糊. 在高低分辨率方面的行人重识别缺乏数据集和研究.

(2)Contribution:

① 提供了一个关于高低分辨率问题(person re-identification between low-resolution and high-resolution,PRLHV)的新数据集,即 HLVID.

② 提出了集合间半耦合映射距离矩阵学习方法(semi-coupled mapping based set-to-set distance learning approach,SMDL).

HLVID DataSet

记录人数:200人,50656张image,平均长度为126帧.

相机:2个,Camera A:1920*1080,Camera B:640*480.

行人帧的规格:高分辨率帧(HR):44*120 到 173*258,平均 105*203;低分辨率帧(LR):8*19 到 19*31,平均 11*21. 高分辨率帧的数量约为低分辨率数量的91倍.

Approach

(1)SMDL方法:

① 目标函数(假设相机A拍摄的数据为高分辨率,B拍摄的数据为低分辨率):

其中 W 表示距离矩阵,V表示高低分辨率对半耦合映射矩阵. 下文具体介绍目标函数中的两项.

② 半耦合映射项:

学习矩阵 V 的作用是将低分辨率行人的特征向着相匹配的高分辨率行人靠近.

其中 S 为匹配的视频对,,ni 为 Xi 的特征数量.

③ 距离区分度项:(不理解为什么要用 Ø,而不是用相同的 V,但下面的求导过程,两者又是等价的)

其中 D 为不匹配集合,d(.) 为马氏距离.

应用set-to-set distance model(SSD)计算视频间距离:(SSD模型待学习)

其中,a^、b^ 为系数向量,可以通过SSD模型计算得出(参考【From Point to Set: Extend the Learning of Distance Metrics;ICCV2013】).

SSD模型的参数计算概述:

其中:

④ 目标函数的具体化:

【注:矩阵的迹运算】

原计算为 XT*W*WT*X = (WT*X)T(WT*X) ,该结果预期是横向量*列向量,最终为实数,

这里看做 tr(WT*X*XT*W) = tr((WT*X) (WT*X)T),该结果预期是列向量*横向量,为矩阵,但迹运算也能得到相同的实数.

(2)优化模型:

① 确定 V 更新 W:

目标函数转化:

其中:

通过构造拉格朗日函数并求导,可得解:

转为求解特征向量.

② 确定 W 更新 V:

对目标函数进行求导,得:

导数为零,进行改写:

上式为标准西尔维斯特方程.(Sylvester,解法很多,尚未看懂)

③ 算法过程:

(3)识别过程:

通过训练得到的 W、V 计算距离,挑选出距离最近的视频:

.

Experiment

(1)实验设置:

① 特征提取:STFV3D、LOMO、deeply-learning.

步态周期:FEP(Flow Energy Profile)

② 参数设置:β = 0.05;γ = 0.4;η = 0.03. 使用 5-fold cross validation.

③ 对比方法:STFV3D、KISSME、XQDA、TDL、JDML(常规方法);RNNCNN、ASTPN、PCB(深度学习方法).

(2)实验结果:

论文阅读笔记(八)【IEEEAccess2019】:High-Resolution and Low-Resolution Video Person Re-Identification: A Benchmark的更多相关文章

  1. 论文阅读笔记八:SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation (IEEE2017)

    原文链接:https://arxiv.org/pdf/1511.00561.pdf github(tensorflow):https://github.com/aizawan/segnet 基于Seg ...

  2. 论文阅读笔记(十八)【ITIP2019】:Dynamic Graph Co-Matching for Unsupervised Video-Based Person Re-Identification

    论文阅读笔记(十七)ICCV2017的扩刊(会议论文[传送门]) 改进部分: (1)惩罚函数:原本由两部分组成的惩罚函数,改为只包含 Sequence Cost 函数: (2)对重新权重改进: ① P ...

  3. 论文阅读笔记 - YARN : Architecture of Next Generation Apache Hadoop MapReduceFramework

    作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...

  4. 论文阅读笔记 - Mesos: A Platform for Fine-Grained ResourceSharing in the Data Center

    作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...

  5. 论文阅读笔记 Word Embeddings A Survey

    论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, ...

  6. 论文阅读笔记 Improved Word Representation Learning with Sememes

    论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...

  7. [置顶] 人工智能(深度学习)加速芯片论文阅读笔记 (已添加ISSCC17,FPGA17...ISCA17...)

    这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于 ...

  8. Nature/Science 论文阅读笔记

    Nature/Science 论文阅读笔记 Unsupervised word embeddings capture latent knowledge from materials science l ...

  9. 论文阅读笔记(二十一)【CVPR2017】:Deep Spatial-Temporal Fusion Network for Video-Based Person Re-Identification

    Introduction (1)Motivation: 当前CNN无法提取图像序列的关系特征:RNN较为忽视视频序列前期的帧信息,也缺乏对于步态等具体信息的提取:Siamese损失和Triplet损失 ...

  10. [论文阅读笔记] GEMSEC,Graph Embedding with Self Clustering

    [论文阅读笔记] GEMSEC: Graph Embedding with Self Clustering 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 已经有一些工作在使用学习 ...

随机推荐

  1. 06-HTML

    今日知识 1. HTML基本语法 2. 特殊符号表示 3.总结 HTML 1. Hyper Text Mark Language 超文本标记语言 * 超文本: * 超文本是用超链接的方法,将各种不同空 ...

  2. Java Stack使用

    1.Stack继承自Vector.遵从先进后出的规则. 2.Stack 是线程同步的.(map.List.Set是线程不同步的,需要在外部封装的时候来同步) 试例代码: public static v ...

  3. k8s系列---Service之ExternalName用法

    需求:需要两个不同的namespace之间的不同pod可以通过name的形式访问 实现方式: A:在其他pod内ping [svcname].[namespace] ping出来到结果就是svc的ip ...

  4. 【全集】IDEA入门到实战

    课程介绍   IDEA是一款功能强悍.非常好用的Java开发工具,近几年编程开发人员对IDEA情有独钟.虽然IDEA功能很强大,但目前市面讲解的不细致.不系统,导致很多IDEA初学者要么无从下手,要么 ...

  5. CentOS6.5安装指定的PHP版本(php5.5)(转)

    查询是否安装有php #rpm -qa|grep php 删除之前安装的php版本 (yum install 安装) #rpm -e php-fpm-5.3.3-47.el6.x86_64 --nod ...

  6. RabbitMQ配置死信队列

    死信队列 消息传输过程中难免会产生一些无法及时处理的消息,这些暂时无法处理的消息有时候也是需要被保留下来的,于是这些无法被及时处理的消息就变成了死信. 既然需要保留这些死信,那么就需要一个容器来存储它 ...

  7. C# 数据类型详解以及变量、对象与内存

    学习刘铁猛老师<C#语言入门详解>视频,针对其中重点知识点进行总结. 1.什么是类型? 类型又称为数据类型(Data Type),数据类型在数据结构中的定义是一个值的集合以及定义在这个值集 ...

  8. 13.python内置模块之re模块

    什么是正则? 正则表达式也称为正则,是一个特殊的字符序列,能帮助检查一个字符串是否与某种模式匹配.可以用来进行验证:邮箱.手机号.qq号.密码.url = 网站地址.ip等.正则不是python语言独 ...

  9. Mac Docker Desktop "Mounts denied: EOF."解决方法

    环境 系统: Mac OS Catalina Docker Desktop: 问题描述 在Mac环境下创建容器时用"-v"参数挂载目录出现"docker: Error r ...

  10. JS简易计算器的实现,以及代码的优化

    用JS实现简易计算器 首先创建结构和样式 <!DOCTYPE html> <html lang="en"> <head> <meta ch ...