Introduction

(1)Motivation:

监控视频中的行人,有的比较清晰,有的因为距离较远非常模糊. 在高低分辨率方面的行人重识别缺乏数据集和研究.

(2)Contribution:

① 提供了一个关于高低分辨率问题(person re-identification between low-resolution and high-resolution,PRLHV)的新数据集,即 HLVID.

② 提出了集合间半耦合映射距离矩阵学习方法(semi-coupled mapping based set-to-set distance learning approach,SMDL).

HLVID DataSet

记录人数:200人,50656张image,平均长度为126帧.

相机:2个,Camera A:1920*1080,Camera B:640*480.

行人帧的规格:高分辨率帧(HR):44*120 到 173*258,平均 105*203;低分辨率帧(LR):8*19 到 19*31,平均 11*21. 高分辨率帧的数量约为低分辨率数量的91倍.

Approach

(1)SMDL方法:

① 目标函数(假设相机A拍摄的数据为高分辨率,B拍摄的数据为低分辨率):

其中 W 表示距离矩阵,V表示高低分辨率对半耦合映射矩阵. 下文具体介绍目标函数中的两项.

② 半耦合映射项:

学习矩阵 V 的作用是将低分辨率行人的特征向着相匹配的高分辨率行人靠近.

其中 S 为匹配的视频对,,ni 为 Xi 的特征数量.

③ 距离区分度项:(不理解为什么要用 Ø,而不是用相同的 V,但下面的求导过程,两者又是等价的)

其中 D 为不匹配集合,d(.) 为马氏距离.

应用set-to-set distance model(SSD)计算视频间距离:(SSD模型待学习)

其中,a^、b^ 为系数向量,可以通过SSD模型计算得出(参考【From Point to Set: Extend the Learning of Distance Metrics;ICCV2013】).

SSD模型的参数计算概述:

其中:

④ 目标函数的具体化:

【注:矩阵的迹运算】

原计算为 XT*W*WT*X = (WT*X)T(WT*X) ,该结果预期是横向量*列向量,最终为实数,

这里看做 tr(WT*X*XT*W) = tr((WT*X) (WT*X)T),该结果预期是列向量*横向量,为矩阵,但迹运算也能得到相同的实数.

(2)优化模型:

① 确定 V 更新 W:

目标函数转化:

其中:

通过构造拉格朗日函数并求导,可得解:

转为求解特征向量.

② 确定 W 更新 V:

对目标函数进行求导,得:

导数为零,进行改写:

上式为标准西尔维斯特方程.(Sylvester,解法很多,尚未看懂)

③ 算法过程:

(3)识别过程:

通过训练得到的 W、V 计算距离,挑选出距离最近的视频:

.

Experiment

(1)实验设置:

① 特征提取:STFV3D、LOMO、deeply-learning.

步态周期:FEP(Flow Energy Profile)

② 参数设置:β = 0.05;γ = 0.4;η = 0.03. 使用 5-fold cross validation.

③ 对比方法:STFV3D、KISSME、XQDA、TDL、JDML(常规方法);RNNCNN、ASTPN、PCB(深度学习方法).

(2)实验结果:

论文阅读笔记(八)【IEEEAccess2019】:High-Resolution and Low-Resolution Video Person Re-Identification: A Benchmark的更多相关文章

  1. 论文阅读笔记八:SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation (IEEE2017)

    原文链接:https://arxiv.org/pdf/1511.00561.pdf github(tensorflow):https://github.com/aizawan/segnet 基于Seg ...

  2. 论文阅读笔记(十八)【ITIP2019】:Dynamic Graph Co-Matching for Unsupervised Video-Based Person Re-Identification

    论文阅读笔记(十七)ICCV2017的扩刊(会议论文[传送门]) 改进部分: (1)惩罚函数:原本由两部分组成的惩罚函数,改为只包含 Sequence Cost 函数: (2)对重新权重改进: ① P ...

  3. 论文阅读笔记 - YARN : Architecture of Next Generation Apache Hadoop MapReduceFramework

    作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...

  4. 论文阅读笔记 - Mesos: A Platform for Fine-Grained ResourceSharing in the Data Center

    作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...

  5. 论文阅读笔记 Word Embeddings A Survey

    论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, ...

  6. 论文阅读笔记 Improved Word Representation Learning with Sememes

    论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...

  7. [置顶] 人工智能(深度学习)加速芯片论文阅读笔记 (已添加ISSCC17,FPGA17...ISCA17...)

    这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于 ...

  8. Nature/Science 论文阅读笔记

    Nature/Science 论文阅读笔记 Unsupervised word embeddings capture latent knowledge from materials science l ...

  9. 论文阅读笔记(二十一)【CVPR2017】:Deep Spatial-Temporal Fusion Network for Video-Based Person Re-Identification

    Introduction (1)Motivation: 当前CNN无法提取图像序列的关系特征:RNN较为忽视视频序列前期的帧信息,也缺乏对于步态等具体信息的提取:Siamese损失和Triplet损失 ...

  10. [论文阅读笔记] GEMSEC,Graph Embedding with Self Clustering

    [论文阅读笔记] GEMSEC: Graph Embedding with Self Clustering 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 已经有一些工作在使用学习 ...

随机推荐

  1. 【Debian】 Debian 安装源配置

    Debian 安装源配置 所有的Linux安装完后第一件事,就是要更新安装源 安装源是什么呢,安装源又称软件源,是指把软件的安装源地址放在一个pool里面,用一条命令(比如apt-get instal ...

  2. Web渗透测试漏洞手册及修复建议

    Web渗透测试漏洞手册及修复建议 0x0 配置管理 0x01 HTTP方法测试 漏洞介绍: 目标服务器启用了不安全的传输方法,如PUT.DELETE等,这些方法表示可能在服务器上使用了 WebDAV, ...

  3. 《SQL基础教程》+ 《SQL进阶教程》 学习笔记

    写在前面:本文主要注重 SQL 的理论.主流覆盖的功能范围及其基本语法/用法.至于详细的 SQL 语法/用法,因为每家 DBMS 都有些许不同,我会在以后专门介绍某款DBMS(例如 PostgreSQ ...

  4. MySQL命令随手记之alter

    修改表名 alter table 表名 rename 新表名; //修改table名 添加.删除.修改字段 alter table 表名 add [column] 列名 数据类型; //添加colum ...

  5. jQuery 源码解析(三十一) 动画模块 便捷动画详解

    jquery在$.animate()这个接口上又封装了几个API,用于进行匹配元素的便捷动画,如下: $(selector).show(speed,easing,callback)        ;如 ...

  6. leetcode-简单-栈-有效的括号

    给定一个只包括 '(',')','{','}','[',']' 的字符串,判断字符串是否有效. 有效字符串需满足:  左括号必须用相同类型的右括号闭合. 左括号必须以正确的顺序闭合. 注意空字符串可被 ...

  7. mysql必知必会--检 索 数 据

    SELECT 语句 SQL语句是由简单的英语单词构成的.这些单词称 为关键字,每个SQL语句都是由一个或多个关键字构成的.大概,最经常 使用的SQL语句就是 SELECT 语句了.它的用途是从一个或多 ...

  8. php操作mysql(数据库常规操作)

    php操作数据库八步走 <?php .建立连接 $connection '); .判断连接是否成功 if (mysqli_connect_error() != null) { die(mysql ...

  9. ubuntu 安装mysql数据库

    apt方式安装 官网参考: https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/ 执行命令: sudo wget https://dev.m ...

  10. EasyUI笔记(五)表单

    本系列只列出一些常用的属性.事件或方法,具体完整知识请查看API文档 Form(表单) 创建一个简单的HTML表单.构建一个包含id.action和method值的表单元素. <form id= ...