MST Unification CodeForces - 1108F
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=2e5+;
int n,m;
int p[N];
struct edge{
int a,b;
int w;
}e[N];
bool cmp(edge a,edge b)
{
return a.w<b.w;
}
int find(int x)
{
if(p[x]!=x)
p[x]=find(p[x]);
return p[x];
}
void Unit(int x,int y)
{
int px=find(x);
int py=find(y);
if(px!=py)
p[px]=py;
}
int main()
{
while(cin>>n>>m)
{
for(int i=;i<=n;i++)
p[i]=i;
for(int i=;i<m;i++)
cin>>e[i].a>>e[i].b>>e[i].w;
sort(e,e+m,cmp);
int ans=;
for(int i=;i<m;)
{
int num=;
int j=i;
//找到边权相同的尾部坐标
while(e[i].w==e[j].w)
j++;
//从i到j都是边权最小且相同的边
for(int k=i;k<j;k++)
{
int pa=find(e[k].a);
int pb=find(e[k].b);
//统计可以选择的合法边的数量
if(pa!=pb)
num++;
}
for(int k=i;k<j;k++)
{
int pa=find(e[k].a);
int pb=find(e[k].b);
//从合法边中减去非冲突边(即可以被选入到同一个方案里,不互相冲突的边)
//比如 有两条边是相同的
//如果选择第一条之后,fx=fy
//遍历到第二条时,num--就不能进行
if(pa!=pb)
Unit(pa,pb),num--;
}
i=j;
//冲突边 = 合法边 - 非冲突边
ans+=num;
}
cout<<ans<<endl;
}
}
MST Unification CodeForces - 1108F的更多相关文章
- Codeforces 1108F MST Unification MST + LCA
Codeforces 1108F MST + LCA F. MST Unification Description: You are given an undirected weighted conn ...
- Codeforces 1108F MST Unification(最小生成树性质)
题目链接:MST Unification 题意:给定一张连通的无向带权图.存在给边权加一的操作,求最少操作数,使得最小生成树唯一. 题解:最小生成树在算法导论中有这个性质: 把一个连通无向图的生成树边 ...
- CF1108F MST Unification
题目地址:CF1108F MST Unification 最小生成树kruskal算法的应用 只需要在算法上改一点点 当扫描到权值为 \(val\) 的边时,我们将所有权值为 \(val\) 的边分为 ...
- Codeforces 1108F (MST Unification) (树上倍增 or 改进 kruksal)
题意:给你一张n个节点和m条边的无向连通图, 你可以执行很多次操作,对某一条边的权值+1(对于每条边,可以不加,可以无限次加),问至少进行多少次操作,可以使这张图的最小生成树变得唯一,并且最小生成树的 ...
- (F. MST Unification)最小生成树
题目链接:http://codeforces.com/contest/1108/problem/F 题目大意:给你n个点和m条边,然后让你进行一些操作使得这个图的最小生成树唯一,每次的操作是给某一条边 ...
- CF F. MST Unification (最小生成树避圈法)
题意 给一个无向加权联通图,没有重边和环.在这个图中可能存在多个最小生成树(MST),你可以进行以下操作:选择某条边使其权值加一,使得MST权值不变且唯一.求最少的操作次数. 分系:首先我们先要知道为 ...
- Codeforces 1108F(克鲁斯卡尔的理解)
最小生成树会多样的情况是:两个或多个边等长且连通同样的两个并查集块. 所以可以跑一遍克鲁斯卡尔,每次把当前等长的边数出来,注意不要边找边并查,因为有一部分边是正常跑生成树我们也不会要他的,这种直接跳了 ...
- CF - 1108 F MST Unification
题目传送门 题意:在一幅图中, 问需要使得多少条边加一,使得最小生成树只有一种方案. 题解:Kruskal, sort完之后,对于相通的一个边权w,我们可以分析出来有多少边是可以被放到图里面的,然后我 ...
- Codeforces Round #535 (Div. 3) 题解
Codeforces Round #535 (Div. 3) 题目总链接:https://codeforces.com/contest/1108 太懒了啊~好久之前的我现在才更新,赶紧补上吧,不能漏掉 ...
随机推荐
- [Effective Java 读书笔记] 第三章类和接口 第二十三-- ??条
第二十三条 请不要再新代码中使用原生态类型 1 使用原生态类型,就失去了泛型在安全性和表述性方面的所有优势,所以新代码中不要使用原生态类型 2 List<String>可以传递给List作 ...
- typeof和类型转换
编程形式 ① 面向过程 ② 面向对象 ③ Js既面向过程又面向对象 typeof(数据) 1)typeof(数据)返回该数据是什么类型的 2)写法: ① typeof(数据) ② typeof 数据 ...
- ES[7.6.x]学习笔记(一)Elasticsearch的安装与启动
Elasticsearch是一个非常好用的搜索引擎,和Solr一样,他们都是基于倒排索引的.今天我们就看一看Elasticsearch如何进行安装. 下载和安装 今天我们的目的是搭建一个有3个节点的E ...
- js—求数组中的最大最小值
参考链接:https://www.w3cplus.com/javascript/calculate-the-max-min-value-from-an-array.html Math.min.appl ...
- vue循环语句
循环使用 v-for 指令. v-for 指令需要以 site in sites 形式的特殊语法, sites 是源数据数组并且 site 是数组元素迭代的别名. v-for 可以绑定数据到数组来渲染 ...
- 戏说前端之CSS编码规范
前言 项目启动时 css 应该注意哪些问题 文件名规范 文件名建议用小写字母加中横线的方式.为什么呢?因为这样可读性比较强,看起来比较清爽,像链接也是用这样的方式,例如 // 地址: github的地 ...
- HTML连载70-相片墙、盒子阴影和文字阴影
一. 制作一个相片墙 二. <!DOCTYPE html> <html lang="en"> <head> <meta charset=& ...
- MySQL中使用group by 是总是出现1055的错误
因为在MySQL中使用group by 是总是出现1055的错误,这就导致了必须去查看是什么原因了,查询了相关的资料,现在将笔记记录下来,以便后面可以参考使用: sql_mode:简而言之就是:它定义 ...
- 【HDU - 1087 】Super Jumping! Jumping! Jumping! (简单dp)
Super Jumping! Jumping! Jumping! 搬中文ing Descriptions: wsw成功的在zzq的帮助下获得了与小姐姐约会的机会,同时也不用担心wls会发现了,可是如何 ...
- OpenCASCADE(一) VS2017+OpenCASCADE+MFC 下载配置安装运行单文档程序画个基本图形
原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/12368154.html 一.下载OpenCASCADE 官网下载是: http://www.o ...