DeepinC超详细题解

考试时想出是dp了,因为显然第i级超级树和第i+1级超级树是有联系的(然而我并不能推出来),这dp的状态鬼才想的出来……个人理解,dp的实质就是从小的状态向大的状态转移,从而得到最终答案,状态分的越细,转移起来就越容易理解,同时相应的时间和空间复杂度也会变大。dp数组的设置就相当于分配状态,那么一开始为什么不把它分的细一点呢?最后在考虑优化。

回到这个题,设f[i][j]为第i级超级树,其中有j条路径且这些路径没有相同的点的方案数(有点难以理解,但这样是为了保证没有重复过某点),边界f[1][1]=f[1][0]=1;

这题主要的难点就是状态的设置,然后就是转移有点多,很容易忘掉其中几个,想明白后其他的就比较简单了。

考虑dp[i]对dp[i+1]的
贡献:枚举左子树和右子树的路径条数l、r,记num=dp[i][l]*dp[i][r],则有
• 什么也不做 dp[i+1][l+r]+=num
• 根自己作为一条新路径 dp[i+1][l+r+1]+=num
• 根连接到左子树(或右子树)的某条路径上 dp[i+1][l+r]+=2*num*(l+r)
• 根连接左子树和右子树的各一条路径 dp[i+1][l+r-1]+=2*num*l*r
• 根连接左子树(或右子树)的两条路径 dp[i+1][l+r-1]+=num*(l*(l-1)+r*(r-1))

最后答案即为f[n][1],n级超级树,有1条路径的方案数,实际上就是有几条路径。

然后还有两个坑点:

1.如果$n^3$枚举会T,我不知道知道为啥,所以要考虑优化,DeepinC给了三条优化方案,这里只选去一条:能给f[i][j]贡献答案的,是f[i-1][?],问号如果是大于i+1,显然就没用了。即两维之和不超过n+i所以为了求出f[n][1],那么两维之和就不必超过n+1。所以对j的限制就是0~(n-i+2)那么对k的限制就更紧了,0~(n-i+2-j)。

2.试试这个点 1 1。如果最后输出时不取模的话会输出1,然后就WA了。还是要注意细节啊。

 #include<iostream>
#include<cstdio>
#define LL long long
using namespace std;
LL n,mod;
LL f[][];
signed main()
{
cin>>n>>mod;
f[][]=f[][]=;
for(int i=;i<n;i++)
{
for(int j=;j<=n-i+;j++)
{
for(int k=;k<=n-i-j+;k++)
{
LL num=f[i][j]*f[i][k]%mod;
f[i+][k+j] =( f[i+][k+j] +num )%mod;
f[i+][k+j] =( f[i+][k+j] +*num*(j+k) )%mod;
f[i+][k+j+]=( f[i+][k+j+] +num )%mod;
f[i+][k+j-]=( f[i+][k+j-] +*num*j*k )%mod;
f[i+][k+j-]=( f[i+][k+j-] +num*j*(j-) )%mod;
f[i+][k+j-]=( f[i+][k+j-] +num*k*(k-) )%mod;
}
}
}
printf("%lld\n",f[n][]%mod);
}

[***]HZOJ 超级树的更多相关文章

  1. 【NOIP模拟赛】超级树 DP

    这个题我在考试的时候把所有的转移都想全了就是新加一个点时有I.不作为II.自己呆着III.连一个IV.连接两个子树中的两个V连接一个子树中的两个,然而V我并不会转移........ 这个题的正解体现了 ...

  2. [07/18NOIP模拟测试5]超级树

    鬼能想到的dp定义:dp[i][j]表示在一棵i级超级树中,有j条路径同时存在且这j条路径没有公共点时,可能的情况数 刚开始我也没看懂,所以举个例子 如一个2级的超级树,父节点为1,左右儿子为2,3 ...

  3. 7.18 NOIP模拟测试5 星际旅行+砍树+超级树

    T1 星际旅行 题意:n个点,m条边,无重边,有自环,要求经过m-2条边两次,2条边一次,问共有多少种本质不同的方案.本质不同:当且仅当至少存在一条边经过次数不同. 题解:考试的时候理解错题,以为他是 ...

  4. [CSP-S模拟测试]:超级树(DP)

    题目传送门(内部题5) 输入格式 一行两个整数$k$.$mod$,意义见上. 输出格式 一行一个整数,代表答案. 样例 样例输入1: 2 100 样例输出1: 样例输入2: 3 1000 样例输出2: ...

  5. @省选模拟赛03/16 - T3@ 超级树

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 一棵 k-超级树(k-SuperTree) 可按如下方法得到:取 ...

  6. noip模拟8[星际旅行·砍树·超级树·求和]

    也不能算考得好,虽然这次A了一道题,但主要是那道题太简单了,没啥成就感,而且有好多人都A掉了 除了那一道,其他的加起来一共拿了25pts,这我能咋办,无奈的去改题 整场考试的状态并不是很好啊,不知道是 ...

  7. 6.17考试总结(NOIP模拟8)[星际旅行·砍树·超级树·求和]

    6.17考试总结(NOIP模拟8) 背景 考得不咋样,有一个非常遗憾的地方:最后一题少取膜了,\(100pts->40pts\),改了这么多年的错还是头一回看见以下的情景... T1星际旅行 前 ...

  8. NOIP模拟测试5「星际旅行·砍树·超级树」

    星际旅行 0分 瞬间爆炸. 考试的时候觉得这个题怎么这么难, 打个dp,可以被儿子贡献,可以被父亲贡献,还有自环,叶子节点连边可以贡献,非叶子也可以贡献,自环可以跑一回,自环可以跑两回, 关键是同一子 ...

  9. HZOI2019 超级树 dp

    题面:https://www.cnblogs.com/Juve/articles/11207540.html(密码)————————————————>>> 题解: 官方题解: 考虑d ...

随机推荐

  1. Django--多对多表的创建、contentType、ajax、ajax传输json数据格式、ajax传输文件数据、 自定义分页器

    MTV与MVC(了解): MTV模型(Django用的就是MTV): M:模型层(models.py) T:templates C:views MVC模型: M:模型层(models.py) V:视图 ...

  2. python基础--数据类型的常用方法1

    1.数字类型 整型 用途:存qq号,手机号,不带字母的身份证号... 进制转换: 二进制转十进制:10 -->  1*(2**1) + 0*(2**0) 2 八进制转十进制:  235  --& ...

  3. 2019.9.28 csp-s模拟测试54 反思总结

    咕咕咕的冲动如此强烈x T1x: 看完题目想了想,感觉把gcd不为1的强行放在一组,看作一个连通块,最后考虑连通块之间的组合方式就可以了. 然后维护这个连通块可以写并查集可以连边跑dfs怎么着都行… ...

  4. 【流水调度问题】【邻项交换对比】【Johnson法则】洛谷P1080国王游戏/P1248加工生产调度/P2123皇后游戏/P1541爬山

    前提说明,因为我比较菜,关于理论性的证明大部分是搬来其他大佬的,相应地方有注明. 我自己写的部分换颜色来便于区分. 邻项交换对比是求一定条件下的最优排序的思想(个人理解).这部分最近做了一些题,就一起 ...

  5. java利用JXL导出/生成 EXCEL【my】

    一.创建一个excel文件 package test;// 生成Excel的类 import java.io.File; import jxl.Workbook;import jxl.write.La ...

  6. SQL Sever实验一 创建和删除数据库数据表

    一. 实验目的 1. 熟悉SQL    Server    2008    中SQL    Server    Management    Studio的环境 2. 了解SQL    Server   ...

  7. oracle-Oradim

    输入以下命令之一: 通过指定以下选项创建实例: -NEW -SID sid | -SRVC srvc | -ASMSID sid | -ASMSRVC srvc [-SYSPWD pass] [-ST ...

  8. NOIP模拟 7.03

    Problem 1 抓牛(catchcow.cpp/c/pas) [题目描述] 农夫约翰被通知,他的一只奶牛逃逸了!所以他决定,马上出发,尽快把那只奶牛抓回来. 他们都站在数轴上.约翰在N(O≤N≤1 ...

  9. Leetcode709.To Lower Case转换成小写字母

    实现函数 ToLowerCase(),该函数接收一个字符串参数 str,并将该字符串中的大写字母转换成小写字母,之后返回新的字符串. 示例 1: 输入: "Hello" 输出: & ...

  10. DOM修改元素的方法总结

    今天我们要谈谈DOM元素的修改(包括修改内容,属性,样式).修改内容的方法----3种:elem.innerHTML:获取或设置元素开始标签到结束标签之间的原始HTML代码片段:elem.textCo ...