[***]HZOJ 超级树
考试时想出是dp了,因为显然第i级超级树和第i+1级超级树是有联系的(然而我并不能推出来),这dp的状态鬼才想的出来……个人理解,dp的实质就是从小的状态向大的状态转移,从而得到最终答案,状态分的越细,转移起来就越容易理解,同时相应的时间和空间复杂度也会变大。dp数组的设置就相当于分配状态,那么一开始为什么不把它分的细一点呢?最后在考虑优化。
回到这个题,设f[i][j]为第i级超级树,其中有j条路径且这些路径没有相同的点的方案数(有点难以理解,但这样是为了保证没有重复过某点),边界f[1][1]=f[1][0]=1;
这题主要的难点就是状态的设置,然后就是转移有点多,很容易忘掉其中几个,想明白后其他的就比较简单了。
考虑dp[i]对dp[i+1]的
贡献:枚举左子树和右子树的路径条数l、r,记num=dp[i][l]*dp[i][r],则有
• 什么也不做 dp[i+1][l+r]+=num
• 根自己作为一条新路径 dp[i+1][l+r+1]+=num
• 根连接到左子树(或右子树)的某条路径上 dp[i+1][l+r]+=2*num*(l+r)
• 根连接左子树和右子树的各一条路径 dp[i+1][l+r-1]+=2*num*l*r
• 根连接左子树(或右子树)的两条路径 dp[i+1][l+r-1]+=num*(l*(l-1)+r*(r-1))
最后答案即为f[n][1],n级超级树,有1条路径的方案数,实际上就是有几条路径。
然后还有两个坑点:
1.如果$n^3$枚举会T,我不知道知道为啥,所以要考虑优化,DeepinC给了三条优化方案,这里只选去一条:能给f[i][j]贡献答案的,是f[i-1][?],问号如果是大于i+1,显然就没用了。即两维之和不超过n+i所以为了求出f[n][1],那么两维之和就不必超过n+1。所以对j的限制就是0~(n-i+2)那么对k的限制就更紧了,0~(n-i+2-j)。
2.试试这个点 1 1。如果最后输出时不取模的话会输出1,然后就WA了。还是要注意细节啊。
#include<iostream>
#include<cstdio>
#define LL long long
using namespace std;
LL n,mod;
LL f[][];
signed main()
{
cin>>n>>mod;
f[][]=f[][]=;
for(int i=;i<n;i++)
{
for(int j=;j<=n-i+;j++)
{
for(int k=;k<=n-i-j+;k++)
{
LL num=f[i][j]*f[i][k]%mod;
f[i+][k+j] =( f[i+][k+j] +num )%mod;
f[i+][k+j] =( f[i+][k+j] +*num*(j+k) )%mod;
f[i+][k+j+]=( f[i+][k+j+] +num )%mod;
f[i+][k+j-]=( f[i+][k+j-] +*num*j*k )%mod;
f[i+][k+j-]=( f[i+][k+j-] +num*j*(j-) )%mod;
f[i+][k+j-]=( f[i+][k+j-] +num*k*(k-) )%mod;
}
}
}
printf("%lld\n",f[n][]%mod);
}
[***]HZOJ 超级树的更多相关文章
- 【NOIP模拟赛】超级树 DP
这个题我在考试的时候把所有的转移都想全了就是新加一个点时有I.不作为II.自己呆着III.连一个IV.连接两个子树中的两个V连接一个子树中的两个,然而V我并不会转移........ 这个题的正解体现了 ...
- [07/18NOIP模拟测试5]超级树
鬼能想到的dp定义:dp[i][j]表示在一棵i级超级树中,有j条路径同时存在且这j条路径没有公共点时,可能的情况数 刚开始我也没看懂,所以举个例子 如一个2级的超级树,父节点为1,左右儿子为2,3 ...
- 7.18 NOIP模拟测试5 星际旅行+砍树+超级树
T1 星际旅行 题意:n个点,m条边,无重边,有自环,要求经过m-2条边两次,2条边一次,问共有多少种本质不同的方案.本质不同:当且仅当至少存在一条边经过次数不同. 题解:考试的时候理解错题,以为他是 ...
- [CSP-S模拟测试]:超级树(DP)
题目传送门(内部题5) 输入格式 一行两个整数$k$.$mod$,意义见上. 输出格式 一行一个整数,代表答案. 样例 样例输入1: 2 100 样例输出1: 样例输入2: 3 1000 样例输出2: ...
- @省选模拟赛03/16 - T3@ 超级树
目录 @description@ @solution@ @accepted code@ @details@ @description@ 一棵 k-超级树(k-SuperTree) 可按如下方法得到:取 ...
- noip模拟8[星际旅行·砍树·超级树·求和]
也不能算考得好,虽然这次A了一道题,但主要是那道题太简单了,没啥成就感,而且有好多人都A掉了 除了那一道,其他的加起来一共拿了25pts,这我能咋办,无奈的去改题 整场考试的状态并不是很好啊,不知道是 ...
- 6.17考试总结(NOIP模拟8)[星际旅行·砍树·超级树·求和]
6.17考试总结(NOIP模拟8) 背景 考得不咋样,有一个非常遗憾的地方:最后一题少取膜了,\(100pts->40pts\),改了这么多年的错还是头一回看见以下的情景... T1星际旅行 前 ...
- NOIP模拟测试5「星际旅行·砍树·超级树」
星际旅行 0分 瞬间爆炸. 考试的时候觉得这个题怎么这么难, 打个dp,可以被儿子贡献,可以被父亲贡献,还有自环,叶子节点连边可以贡献,非叶子也可以贡献,自环可以跑一回,自环可以跑两回, 关键是同一子 ...
- HZOI2019 超级树 dp
题面:https://www.cnblogs.com/Juve/articles/11207540.html(密码)————————————————>>> 题解: 官方题解: 考虑d ...
随机推荐
- 数据库操作之Spring JDBCTemplate(postgresql)
本文总结了两种使用JDBCTemplate进行数据库CRUD操作的例子,我用的是pg,废话不说,直接开始吧. 先贴一张目录结果图吧: 上图中最主要的是配置文件和所需的各种jar包. 一.通过属性文件的 ...
- Django 使用模板页面,块标签,模型
1.Django 使用模板页面 Django对于成体系的页面提出了模板继承和模板加载的方式. 1.导入静态页面 2.导入静态文件(css,js,images) 3.修改页面当中的静态地址 1.sett ...
- java窗体swing使用jlabel显示图片
Icon icon = new ImageIcon("src\\resource\\" + jTFimgName.getText()); jLabColor.setIcon(ico ...
- MySQL中一条更新语句是如何执行的
1.创建表的语句和更新的语句 这个表的创建语句,这个表有一个主键ID和一个整型字段c: mysql> create table T(ID int primary key, c int); 如果要 ...
- mysql 查询条件不区分大小写问题
转自 http://blog.csdn.net/qishuo_java/article/details/40118937 转自 https://www.cnblogs.com/wuyun-blog/p ...
- 【AHOI2013复仇】从一道题来看DFS及其优化的一般步骤和数组分层问题【转】
http://www.cppblog.com/MatoNo1/archive/2012/09/23/191708.html —————————————————————————————————————— ...
- 使用Spring Cache + Redis + Jackson Serializer缓存数据库查询结果中序列化问题的解决
应用场景 我们希望通过缓存来减少对关系型数据库的查询次数,减轻数据库压力.在执行DAO类的select***(), query***()方法时,先从Redis中查询有没有缓存数据,如果有则直接从Red ...
- Dijkstra,floyd,spfa三种最短路的区别和使用
这里不列举三种算法的实现细节,只是简单描述下思想,分析下异同 一 Dijkstra Dijkstra算法可以解决无负权图的最短路径问题,只能应付单源起点的情况,算法要求两个集合,开始所有点在第二个集合 ...
- 【洛谷】 P1420 最长连号
题目描述 输入n个正整数,(1<=n<=10000),要求输出最长的连号的长度.(连号指从小到大连续自然数) 输入输出格式 输入格式: 第一行,一个数n; 第二行,n个正整数,之间用空格隔 ...
- 第十章—DOM(三)——Text类型
文本节点由TEXT类型表示,包含纯文本内容,Text节点具有以下特征: 看看下面的代码: div元素开始和结束标签只要存在内容,就会创建一个文本节点.可以使用以下代码来访问元素的这些文本子节点: 访问 ...