light oj 1102 - Problem Makes Problem组合数学(隔板法)
As I am fond of making easier problems, I discovered a problem. Actually, the problem is 'how can you make n by adding k non-negative integers?' I think a small example will make things clear. Suppose n=4 and k=3. There are 15 solutions. They are
1. 0 0 4
2. 0 1 3
3. 0 2 2
4. 0 3 1
5. 0 4 0
6. 1 0 3
7. 1 1 2
8. 1 2 1
9. 1 3 0
10. 2 0 2
11. 2 1 1
12. 2 2 0
13. 3 0 1
14. 3 1 0
15. 4 0 0
As I have already told you that I use to make problems easier, so, you don't have to find the actual result. You should report the result modulo 1000,000,007.
Input
Input starts with an integer T (≤ 25000), denoting the number of test cases.
Each case contains two integer n (0 ≤ n ≤ 106) and k (1 ≤ k ≤ 106).
Output
For each case, print the case number and the result modulo 1000000007.
Sample Input |
Output for Sample Input |
4 4 3 3 5 1000 3 1000 5 |
Case 1: 15 Case 2: 35 Case 3: 501501 Case 4: 84793457 |
分析:
题目意思是把 n个元素分成k组且允许有空位置, 这就用到隔板法中的允许若干个人(或位置)为空的问题, 因为把元素分成k组需要k-1个隔板,并且可以允许元素个数为空,所以隔板可以放在任意位置,隔板加上元素个数一共有n+k-1个位置,那么就相当于从n+k-1个位置中选出k-1个位置放隔板即c(n-k+1, k-1)。然后直接用费小马定理(a/b)%mod = a * (b(^mod-2))%mod;求下逆元就可以了。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#define N 2000010
#define mod 1000000007
using namespace std;
long long d[N];
void init()
{
d[0] = 1;
for(int i = 1; i < N; i++)
d[i] = (i * d[i-1]) % mod;
}
long long quickmi(long long a, long long b)
{
long long sum = 1;
while(b)
{
if(b & 1)
sum = (sum * a) % mod;
a = (a * a) % mod;
b /= 2;
}
return sum;
}
int main(void)
{
int T , cas;
int n, k;
scanf("%d", &T);
init();
cas = 0;
while(T--)
{
cas++;
scanf("%d%d", &n, &k);
long long ans = quickmi((d[k-1] * d[n]) % mod, mod-2);
ans = (d[n+k-1] * ans ) % mod;
printf("Case %d: %lld\n", cas, ans);
}
return 0;
}
light oj 1102 - Problem Makes Problem组合数学(隔板法)的更多相关文章
- (light oj 1102) Problem Makes Problem (组合数 + 乘法逆元)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1102 As I am fond of making easier problems, ...
- Light OJ 1004 - Monkey Banana Problem(DP)
题目大意: 给你一菱形的数字阵,问从最上面走到最下面所能获得的最大值是多少? #include<cstdio> #include<cstring> #include<io ...
- Light oj 1095 - Arrange the Numbers (组合数学+递推)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1095 题意: 给你包含1~n的排列,初始位置1,2,3...,n,问你刚好固定 ...
- Light OJ 1102
题意: 给你一个数 N , 求分成 K 个数 (可以为 0 ) 的种数: 思路: 类似 在K个抽屉放入 N 个苹果, 不为0, 就是 在 n-1 个空隙中选 m-1个: 为 0, 就可以先在 K 个抽 ...
- lightoj 1102 - Problem Makes Problem
1102 - Problem Makes Problem As I am fond of making easier problems, I discovered a problem. Actuall ...
- Light OJ 1406 Assassin`s Creed 减少国家DP+支撑点甚至通缩+最小路径覆盖
标题来源:problem=1406">Light OJ 1406 Assassin`s Creed 意甲冠军:向图 派出最少的人经过全部的城市 而且每一个人不能走别人走过的地方 思路: ...
- Light OJ 1272 Maximum Subset Sum 高斯消元 最大XOR值
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u011686226/article/details/32337735 题目来源:problem=12 ...
- Light OJ 1114 Easily Readable 字典树
题目来源:Light OJ 1114 Easily Readable 题意:求一个句子有多少种组成方案 仅仅要满足每一个单词的首尾字符一样 中间顺序能够变化 思路:每一个单词除了首尾 中间的字符排序 ...
- Light OJ 1429 Assassin`s Creed (II) BFS+缩点+最小路径覆盖
题目来源:Light OJ 1429 Assassin`s Creed (II) 题意:最少几个人走全然图 能够反复走 有向图 思路:假设是DAG图而且每一个点不能反复走 那么就是裸的最小路径覆盖 如 ...
随机推荐
- 《C# 爬虫 破境之道》:第二境 爬虫应用 — 第二节:以事件驱动状态、数据处理
续上一节内容,对Web爬虫进行进一步封装,通过委托将爬虫自己的状态变化以及数据变化暴露给上层业务处理或应用程序. 为了方便以后的扩展,我先定义一个蚂蚁抽象类(Ant),并让WorkerAnt(工蚁)继 ...
- python认识及环境变量
什么是python? python是一种脚本语言,是高级语言.计算机只能识别机器语言,在机器语言上是汇编语言,再往上是高级语言.高级语言的基础是C语言. python语言较为简单,易入门. pytho ...
- 小白学Java:奇怪的RandomAccess
目录 小白学Java:奇怪的RandomAccess RandomAccess是个啥 forLoop与Iterator的区别 判断是否为RandomAccess 小白学Java:奇怪的RandomAc ...
- Web测试中定位bug的方法
在web测试过程中,经常会遇到页面中内容或数据显示错误,甚至不显示,第一反应就是BUG,没错,确实是BUG.进一步了解这个BUG的问题出在那里,是测试人员需要掌握的,可以简单的使用浏览器自带开发者工具 ...
- playbooks框架部署远程主机
进入到ansible和python环境 进入python3.6虚拟环境 #su - deploy #source .py3-a2.5-env/bin/activate 加载ansible 2.5版本 ...
- Django 数据库连接缓存的坑
https://www.cnblogs.com/xcsg/p/11446990.html
- 分布式唯一ID的生成方案
分布式ID的特性 全局唯一 不能出现重复的ID,这是最基本的要求. 递增 有利于关系数据库索引性能. 高可用 既然是服务于分布式系统,为多个服务提供ID服务,访问压力一定很大,所以需要保证高可用. 信 ...
- Oracle GoldenGate Best Practices: Active-Active Configuration with DML Auto CDR
Executive Overview This document is an introduction to Oracle GoldenGate (DIPC remote agent)’s best ...
- c#数字图像处理(一)Bitmap类、 Bitmapdata类和 Graphics类
Bitmap类. Bitmapdata类和 Graphics类是C#图像处理中最重要的3个类,如果要用C#进行图像处理,就一定要掌握它们. 1.1 Bitmap类Bitmap对象封装了GDI+中的一个 ...
- 源码详解系列(七) ------ 全面讲解logback的使用和源码
什么是logback logback 用于日志记录,可以将日志输出到控制台.文件.数据库和邮件等,相比其它所有的日志系统,logback 更快并且更小,包含了许多独特并且有用的特性. logback ...