soundtouch变速主要采用WSOLA算法来进行变速。

http://www.surina.net/soundtouch/

https://blog.csdn.net/suhetao/article/details/5863477

The principle of WSOLA refer to following figure:

There are three important parameter: SequenceMs, overlapMs, seekWindowMs.

These parameters affect to the time-stretch algorithm as follows:

    • DEFAULT_SEQUENCE_MS: This is the default length of a single processing sequence in milliseconds which determines the how the original sound is chopped in the time-stretch algorithm. Larger values mean fewer sequences are used in processing. In principle a larger value sounds better when slowing down the tempo, but worse when increasing the tempo and vice versa.

      By default, this setting value is calculated automatically according to tempo value.

    • DEFAULT_SEEKWINDOW_MS: The seeking window default length in milliseconds is for the algorithm that seeks the best possible overlapping location. This determines from how wide a sample "window" the algorithm can use to find an optimal mixing location when the sound sequences are to be linked back together.

      The bigger this window setting is, the higher the possibility to find a better mixing position becomes, but at the same time large values may cause a "drifting" sound artifact because neighboring sequences can be chosen at more uneven intervals. If there's a disturbing artifact that sounds as if a constant frequency was drifting around, try reducing this setting.

      By default, this setting value is calculated automatically according to tempo value.

    • DEFAULT_OVERLAP_MS: Overlap length in milliseconds. When the sound sequences are mixed back together to form again a continuous sound stream, this parameter defines how much the ends of the consecutive sequences will overlap with each other.

      This shouldn't be that critical parameter. If you reduce the DEFAULT_SEQUENCE_MS setting by a large amount, you might wish to try a smaller value on this.

function out = check_limits(in, min, max)

if in < min

  out = min;

else if in > max

  out = max;

else

  out = in;

end

end

function [seekWindowLength, seekLength, overlapLength] = calcSeqParams(fs, tempo)

overlapMs = 8;

autoseq_tempo_low = 0.5;

autoseq_tempo_top = 2.0;

autoseq_at_min = 90;

autoseq_at_max = 40;

autoseq_k =(autoseq_at_max - autoseq_at_min) / (autoseq_temp_top - auto_temp_low);

autoseq_c = autoseq_at_min -autoseq_k * autoseq_temp_low;

autoseek_at_min = 20;

autoseek_at_max = 15;

autoseek_k =(autoseek_at_max - autoseek_at_min) / (autoseq_temp_top - auto_temp_low);

autoseek_c = autoseek_at_min -autoseek_k * autoseq_temp_low;

%calc sequenceMs

seq = autoseq_c + autoseq_k * tempo;

seq = check_limits(seq, autoseq_at_max, autoseq_at_min);

sequenceMs = round(seq);

seek= autoseek_c + autoseek_k * tempo;

seek= check_limits(seek, autoseek_at_max, autoseek_at_min);

seekMs = round(seek)

seekWindowLength = sequenceMs * fs / 1000;

seekLength = seekMs * fs /1000;

overlapLength = overlapMs * fs / 1000;

overlapLength  = overlapLength - mod(overlapLength, 8);

end

function corr = calcCrossCorr(mixingSeg, compareSeg)

len = length(compareSeg(:,1));

corr = 0;

norm = 0;

for i = 1: 1 : len

  corr = corr + mixingSeg(i) * compareSeg(i);

  norm = norm + mixingSeg(i) * mixingSeg(i);

end

corr = corr / sqrt(norm);

end

function offset = seekBestOverlapPosition(seekWindow, compareSeg, overlapLength, seekLength)

bestCorr = calcCrossCorr(seekWindow(1:overlapLength, 1), compareSeg);

offset = 1;

for i = 2 : 1 : seekLength

  corr = calcCrossCorr(seekWindow(i:i + overlapLength, 1), compareSeg);

  if corr > bestCorr

    bestCorr = corr;

    offset = i;

  end

end

end

function output = overlap(rampUp, rampDown)

len=length(rampDown);

for i = 1:1:len

  output(i,1) = rampUp(i) * i / len + rampDown(i) * (len - i) / len;

end

end

function [output, outpos, lastCompare, inpos] = processSamples(input, inputLen, expectOutputLen, compareSeg, overlapLength, seekLength, seekWindowLength, tempo, isBeginning)

nominalSkip = tempo * (seekWindowLength - overlapLength);

sampleReq  = max(round(nominalSkip) + overlapLength, seekWindow);

inpos = 1;

outpos = 1;

offset = 0;

skipFract = 0;

while inputLen - inpos >= sampleReq

  if isBeginning == 0

    offset = seekBestOverlapPosition(input(inpos : inpos + overlapLength + seekLength - 1, 1), compareSeg, overlapLength, seekLength);

    output(outpos:outpos + overlapLength - 1, 1) = overlap(input(inpos + offset : inpos + offset + overlapLength - 1, 1), compareseg);

    ouputpos = outpos + overlapLength;

    offset = offset  + overlapLength;

  else

    isBeginning = 0;

    skip = round(tempo * overlapLength);

    skipFract = skipFract - skip;

  end

  temp = (seekWindowLength - 2 * overlapLength);

  if outpos + tmep < expectOutputLen

    output(outpos : outpos + temp - 1, 1) = input (inpos + offset : inpos + offset + temp - 1, 1);

    outpos = outpos + temp;

  else   

    output(outpos : expectOutputLen, 1) = input (inpos + offset : inpos + offset + expectOutputLen- outpos, 1);

    outpos = expectOutputLen;

    beak;

  end

  compareSeg = input (inpos + offset + temp: inpos + offset + temp +overlapLength - 1, 1);

  skipFract = skipFract + nominalSkip;

  ovlSkip = floor(skipFract);

  skipFract = skipFract - ovlSkip;

  inpos = inpos  + ovlSkip;

end

lastCompare = compareSeg;

end

function output = changeTempo(input, fs, tempo)

inputLen = length(input(:,1));

outputLen = round(inputLen / tempo);

output = zeros(outputLen, 1);

[seekWindowLength, seekLength, overlapLength] = calcSeqParams(fs, tempo);

isBeginning = 1;

compareBuf = zeros(overlapLength, 1);

expectOutLen = outputLen;

[output, outpos, compareBuf, inpos] = processSamples(input, inputLen, expectOutLen, compareBuf, overlapLength, seekLength, seekWindowLength, tempo, isBeginning);

remainningSamples = inputLen - inpos;

%append zeros to the remainning data

remainningLen = remainningSamples + 200 * 128;

remainningInput = zeros(remainningLen, 1);

remainningInput(1:remainningSamples, 1) = input(inpos:inpos + remainningSamples - 1, 1);

if outputLen > outpos

  expectOutLen = outputLen - outpos + 1;

  isBeginning = 0;

  [tempOutput, tempOutpos, compareBuf, inpos] = processSamples(remainingInput, remainingInputLen, expectOutLen, compareBuf, overlapLength, seekLength, seekWindowLength, tempo, isBeginning);

  output(outpos:outputLen, 1) = tempOutput(1: tempOutpos);

end

end

main.m:

clc;

clear all;

[input fs] = wavread('test.wav');

tempo = 2;

output = changeTempo(input, fs, tempo);

wavwrite(output, fs, 'output.wav');

soundtouch 变速算法matlab实现的更多相关文章

  1. soundtouch变速wsola算法之改进

    soundtouch变速算法很类似sola算法,细看才知道是wsola算法. 上个星期有个需求,将该变速应用到直播的包处理,有点类似于webrtc的netEQ处理机制. 直接使用soundtouch, ...

  2. OLA音频变速算法的仿真与剖析

    前段时间,在尝试音乐节拍数的提取时,终于有了突破性的进展,效果基本上比市面上的许多商业软件还要好,在作节拍数检测时,高频信息作用不大, 通过重采样减小运算量.重采样让我想起了在学校里面做的变速变调算法 ...

  3. 标准差分进化算法matlab程序实现(转载)

    标准差分进化算法matlab程序实现 自适应差分演化算法方面的Matlab和C++代码及论文 差分进化算法 DE-Differential Evolution matlab练习程序(差异演化DE) [ ...

  4. 密度峰值聚类算法MATLAB程序

    密度峰值聚类算法MATLAB程序 凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 密度峰值聚类算法简介见:[转] 密度峰值聚类算法(DPC) 数据见:MATL ...

  5. GWO(灰狼优化)算法MATLAB源码逐行中文注解(转载)

    以优化SVM算法的参数c和g为例,对GWO算法MATLAB源码进行了逐行中文注解. tic % 计时器 %% 清空环境变量 close all clear clc format compact %% ...

  6. 每天进步一点点------Alpha半透明图形叠加算法Matlab+Verilog实现

    Alpha图形叠加算法Matlab+Verilog实现 1.1. Alpha算法的研究 Alpha通道是一个8位的灰度通道,该通道用256级灰度来记录图像中的透明度信息,定义透明.不透明和半透明区域, ...

  7. 医学CT图像特征提取算法(matlab实现)

    本科毕设做的是医学CT图像特征提取方法研究,主要是肺部CT图像的特征提取.由于医学图像基本为灰度图像,因此我将特征主要分为三类:纹理特征,形态特征以及代数特征,每种特征都有对应的算法进行特征提取. 如 ...

  8. 蚁群算法matlab实现

    大家好,我是小鸭酱,博客地址为:http://www.cnblogs.com/xiaoyajiang 以下用matlab实现蚁群算法:   %蚂蚁算法test   %用产生的一个圆上的十个点来检验蚂蚁 ...

  9. 多源最短路Floyd 算法————matlab实现

    弗洛伊德(Floyd)算法是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 基本思想 通过Floyd计 ...

随机推荐

  1. EasyUI笔记(二)Layout布局

    本系列只列出一些常用的属性.事件或方法,具体完整知识请查看API文档 Panel(面板)   1. 通过标签创建面板 <div id="p" class="easy ...

  2. 吴裕雄--天生自然 PYTHON数据分析:所有美国股票和etf的历史日价格和成交量分析

    # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by ...

  3. 前端-2019 history 与 location

    HTML5 API解析之Window.history历史记录 1.简介 window.history是用来保存用户在一个会话期间的网站访问记录,并提供相应的方法进行追溯.其对应的成员如下: 方法:ba ...

  4. Git的学习和使用

    1.1. Git 了解git的仓库概念 熟悉何为版本控制,了解分布式版本控制(git)和集中式版本控制(svn) 能够熟练使用git的基本指令完成仓库的初始化/添加/提交/日志/回退/分支等操作 gi ...

  5. 剑指offer-面试题17-打印从1到最大的n位数-数字

    /* 题目: 输入数字n,按顺序打印从1到最大的n位十进制数. 如输入3,打印从1,2,3到999. */ /* 思路: 大数问题转化为字符串或数组. */ #include<iostream& ...

  6. 注解配置springMVC

    在随笔“springMVC项目配置文件”的基础上,进行优化,使用注解配置,控制器类得以简化: 一.注解配置springMVC 1.在HelloController类中,去除实现的Controller接 ...

  7. Maven修改test/rsource的output folder报错Test source folder 'src/test/java'... is not also used for main s

    eclipse新建maven项目时候,只出来三个文件夹,然后大都督手动添加了缺失的src/test/resource 的文件夹,最后想修改一下 Output folder的路径为 (原来是     d ...

  8. Linux connect: Network is unreachable

    在虚拟机中ping,发现网络不通: [root@node01 ~]# ping 114.114.114.114 connect: Network is unreachable 发生此问题时,环境如下: ...

  9. BZOJ3473&&BZOJ3277串

    BZOJ3473&&BZOJ3277串 题面 自己找去 HINT 对于所有串建立一个广义后缀自动机,对于每一个节点开一个set表示这个节点接受的子串在哪些串里出现过,然后在parent ...

  10. unity踩坑2020-01-21

    这几天一直在测试一个类似于传奇的2d界面游戏,目前做的测试为: 人物动作响应,主要是8方向的判断和资源文件精灵的刷新. 学到的知识点: 1,Enum.GetHashCode() 可以得到这个枚举的索引 ...