IPSec VPN是目前VPN技术中点击率非常高的一种技术,同时提供VPN和信息加密两项技术,这一期专栏就来介绍一下IPSec VPN的原理。
IPSec VPN应用场景

IPSec VPN的应用场景分为3种:
1.
Site-to-Site(站点到站点或者网关到网关):如弯曲评论的3个机构分布在互联网的3个不同的地方,各使用一个商务领航网关相互建立VPN隧道,企业内网(若干PC)之间的数据通过这些网关建立的IPSec隧道实现安全互联。
2.
End-to-End(端到端或者PC到PC): 两个PC之间的通信由两个PC之间的IPSec会话保护,而不是网关。
3.
End-to-Site(端到站点或者PC到网关):两个PC之间的通信由网关和异地PC之间的IPSec进行保护。
VPN只是IPSec的一种应用方式,IPSec其实是IP Security的简称,它的目的是为IP提供高安全性特性,VPN则是在实现这种安全特性的方式下产生的解决方案。IPSec是一个框架性架构,具体由两类协议组成:
1.
AH协议(Authentication Header,使用较少):可以同时提供数据完整性确认、数据来源确认、防重放等安全特性;AH常用摘要算法(单向Hash函数)MD5和SHA1实现该特性。
2.
ESP协议(Encapsulated Security Payload,使用较广):可以同时提供数据完整性确认、数据加密、防重放等安全特性;ESP通常使用DES、3DES、AES等加密算法实现数据加密,使用MD5或SHA1来实现数据完整性。
为何AH使用较少呢?因为AH无法提供数据加密,所有数据在传输时以明文传输,而ESP提供数据加密;其次AH因为提供数据来源确认(源IP地址一旦改变,AH校验失败),所以无法穿越NAT。当然,IPSec在极端的情况下可以同时使用AH和ESP实现最完整的安全特性,但是此种方案极其少见。
IPSec封装模式介绍完IPSec VPN的场景和IPSec协议组成,再来看一下IPSec提供的两种封装模式(传输Transport模式和隧道Tunnel模式)

上图是传输模式的封装结构,再来对比一下隧道模式:

可以发现传输模式和隧道模式的区别:
1.
传输模式在AH、ESP处理前后IP头部保持不变,主要用于End-to-End的应用场景。
2.
隧道模式则在AH、ESP处理之后再封装了一个外网IP头,主要用于Site-to-Site的应用场景。
从上图我们还可以验证上一节所介绍AH和ESP的差别。下图是对传输模式、隧道模式适用于何种场景的说明。

从这张图的对比可以看出:
1.
隧道模式可以适用于任何场景
2.
传输模式只能适合PC到PC的场景
隧道模式虽然可以适用于任何场景,但是隧道模式需要多一层IP头(通常为20字节长度)开销,所以在PC到PC的场景,建议还是使用传输模式。
为了使大家有个更直观的了解,我们看看下图,分析一下为何在Site-to-Site场景中只能使用隧道模式:

如上图所示,如果发起方内网PC发往响应方内网PC的流量满足网关的兴趣流匹配条件,发起方使用传输模式进行封装:
1.
IPSec会话建立在发起方、响应方两个网关之间。
2.
由于使用传输模式,所以IP头部并不会有任何变化,IP源地址是192.168.1.2,目的地址是10.1.1.2。
3.
这个数据包发到互联网后,其命运注定是杯具的,为什么这么讲,就因为其目的地址是10.1.1.2吗?这并不是根源,根源在于互联网并不会维护企业网络的路由,所以丢弃的可能性很大。
4.
即使数据包没有在互联网中丢弃,并且幸运地抵达了响应方网关,那么我们指望响应方网关进行解密工作吗?凭什么,的确没什么好的凭据,数据包的目的地址是内网PC的10.1.1.2,所以直接转发了事。
5.
最杯具的是响应方内网PC收到数据包了,因为没有参与IPSec会话的协商会议,没有对应的SA,这个数据包无法解密,而被丢弃。
我们利用这个反证法,巧妙地解释了在Site-to-Site情况下不能使用传输模式的原因。并且提出了使用传输模式的充要条件:兴趣流必须完全在发起方、响应方IP地址范围内的流量。比如在图中,发起方IP地址为6.24.1.2,响应方IP地址为2.17.1.2,那么兴趣流可以是源6.24.1.2/32、目的是2.17.1.2/32,协议可以是任意的,倘若数据包的源、目的IP地址稍有不同,对不起,请使用隧道模式。
IPSec协商

IPSec除了一些协议原理外,我们更关注的是协议中涉及到方案制定的内容:
1.
兴趣流:IPSec是需要消耗资源的保护措施,并非所有流量都需要IPSec进行处理,而需要IPSec进行保护的流量就称为兴趣流,最后协商出来的兴趣流是由发起方和响应方所指定兴趣流的交集,如发起方指定兴趣流为192.168.1.0/24à10.0.0.0/8,而响应方的兴趣流为10.0.0.0/8à192.168.0.0/16,那么其交集是192.168.1.0/24à10.0.0.0/8,这就是最后会被IPSec所保护的兴趣流。
2.
发起方:Initiator,IPSec会话协商的触发方,IPSec会话通常是由指定兴趣流触发协商,触发的过程通常是将数据包中的源、目的地址、协议以及源、目的端口号与提前指定的IPSec兴趣流匹配模板如ACL进行匹配,如果匹配成功则属于指定兴趣流。指定兴趣流只是用于触发协商,至于是否会被IPSec保护要看是否匹配协商兴趣流,但是在通常实施方案过程中,通常会设计成发起方指定兴趣流属于协商兴趣流。
3.
响应方:Responder,IPSec会话协商的接收方,响应方是被动协商,响应方可以指定兴趣流,也可以不指定(完全由发起方指定)。
4.
发起方和响应方协商的内容主要包括:双方身份的确认和密钥种子刷新周期、AH/ESP的组合方式及各自使用的算法,还包括兴趣流、封装模式等。
5.
SA:发起方、响应方协商的结果就是曝光率很高的SA,SA通常是包括密钥及密钥生存期、算法、封装模式、发起方、响应方地址、兴趣流等内容。
我们以最常见的IPSec隧道模式为例,解释一下IPSec的协商过程:

上图描述了由兴趣流触发的IPSec协商流程,原生IPSec并无身份确认等协商过程,在方案上存在诸多缺陷,如无法支持发起方地址动态变化情况下的身份确认、密钥动态更新等。伴随IPSec出现的IKE(Internet Key Exchange)协议专门用来弥补这些不足:
1.
发起方定义的兴趣流是源192.168.1.0/24目的10.0.0.0/8,所以在接口发送发起方内网PC发给响应方内网PC的数据包,能够得以匹配。
2.
满足兴趣流条件,在转发接口上检查SA不存在、过期或不可用,都会进行协商,否则使用当前SA对数据包进行处理。
3.
协商的过程通常分为两个阶段,第一阶段是为第二阶段服务,第二阶段是真正的为兴趣流服务的SA,两个阶段协商的侧重有所不同,第一阶段主要确认双方身份的正确性,第二阶段则是为兴趣流创建一个指定的安全套件,其最显著的结果就是第二阶段中的兴趣流在会话中是密文。
IPSec中安全性还体现在第二阶段SA永远是单向的:

从上图可以发现,在协商第二阶段SA时,SA是分方向性的,发起方到响应方所用SA和响应放到发起方SA是单独协商的,这样做的好处在于即使某个方向的SA被破解并不会波及到另一个方向的SA。这种设计类似于双向车道设计。
IPSec虽然只是5个字母的排列组合,但其所涉及的协议功能众多、方案又极其灵活,本期主要介绍IPSec的基本原理,在后续专栏还会继续介绍IPSec的其它方面知识

ipsec原理(转载)的更多相关文章

  1. ahjesus 前端缓存原理 转载

    LAMP缓存图 从图中我们可以看到网站缓存主要分为五部分 服务器缓存:主要是基于web反向代理的静态服务器nginx和squid,还有apache2的mod_proxy和mod_cache模 浏览器缓 ...

  2. HTML5 Geolocation API工作原理[转载]

    大家都知道,HTML5 Geolocation 可以使用 IP 地址.基于 Web 的数据库.无线网络连接和三角测量或 GPS 技术来确定经度和纬度. 问题: 在一个基于地理位置服务的个人业余项目(小 ...

  3. 超小Web手势库AlloyFinger原理(转载)

    目前AlloyFinger作为腾讯手机QQ web手势解决方案,在各大项目中都发挥着作用. 感兴趣的同学可以去Github看看: https://github.com/AlloyTeam/AlloyF ...

  4. 深入浅出HTTPS工作原理(转载)

    转载自: https://blog.csdn.net/wangtaomtk/article/details/80917081 深入浅出HTTPS工作原理 HTTP协议由于是明文传送,所以存在三大风险: ...

  5. Spring的IOC原理(转载)

    在网上看到一篇文章,感觉写得挺不错的,转载一下,本文转载自:http://www.cnblogs.com/xdp-gacl/p/3707631.html 一. IoC理论的背景 我们都知道,在采用面向 ...

  6. logrotate机制与原理[转载]

    http://blog.lightxue.com/how-logrotate-works/ 日志实在是太有用了,它记录了程序运行时各种信息.通过日志可以分析用户行为,记录运行轨迹,查找程序问题.可惜磁 ...

  7. 【漫画解读】HDFS存储原理(转载)

    以简洁易懂的漫画形式讲解HDFS存储机制与运行原理. 一.角色出演 如上图所示,HDFS存储相关角色与功能如下: Client:客户端,系统使用者,调用HDFS API操作文件;与NN交互获取文件元数 ...

  8. iOS OC语言: Block底层实现原理 (转载)

    作者:Liwjing 地址:http://www.jianshu.com/users/8df89a9d8380/latest_articles 先来简单介绍一下Block Block是什么? 苹果推荐 ...

  9. 深度剖析:CDN内容分发网络技术原理--转载

    1.前言 Internet的高速发展,给人们的工作和生活带来了极大的便利,对Internet的服务品质和访问速度要求越来越高,虽然带宽不断增加,用户数量也在不断增加,受Web服务器的负荷和传输距离等因 ...

随机推荐

  1. JDK8新特性之重复注解

    什么是重复注解 下面是JDK8中的重复注解(java.lang.annotation.Repeatable)定义的源码. @Documented @Retention(RetentionPolicy. ...

  2. vue on emit 父子之间传值应用详细代码

    大概很多人都知道用这个,网上教程也一大堆,但我想说的是一定要手动敲一遍,敲一遍,敲一遍,重要的事情说三遍. 大概有些人也不知道它该何时用on,或者emit 的吧? 先说两个我项目中用到的场景吧: 项目 ...

  3. ArcGis相接面补节点c#

    相接(Touch)面执行切割后 新面与原相接面会缺少公共节点. private void AddPointToTouchesPolygon(IFeatureCursor newFeatureCurso ...

  4. docker Dockerfile学习---构建mongodb环境

    1.创建项目目录并上传包 mkdir centos_mongodb cd centos_mongodb .tgz 2.编辑配置文件 vi mongodb.conf dbpath = /data/usr ...

  5. Dubbo管理端工具

    要得到dubbo的管理端工具其实很简单,只需要下面几步: 1.下载源码:我下载的是dubbo-dubbo-2.5.7.zip . 2.使用maven命令编译源码,得到war包: 将下载的dubbo-d ...

  6. line-height 行高的使用

    line-height:normal; 默认  字体 line-height:1.5; line-height:200%; line-height:50px;  ps : 固定的值 line-heig ...

  7. 10.Struts2值栈

    1.什么是值栈 * 值栈就相当于Struts2框架的数据的中转站,向值栈存入一些数据.从值栈中获取到数据. * ValueStack 是 struts2 提供一个接口,实现类 OgnlValueSta ...

  8. flink idea 打包jar 并放到集群上运行

    flink idea 打包jar 并放到集群上运行 在开始之前注意前提,当前项目的scala的版本要和集群上的scala一致   我已经创建好一个wordCount的flink项目   注意项目的po ...

  9. shell 例子

    shell编程入门 http://www.runoob.com/linux/linux-shell-variable.html http://c.biancheng.net/cpp/shell/ .查 ...

  10. Spring - @ManagedResource, @ManagedOperation, @ManagedAttribute

    总结 通过annotation (@ManagedResource, @ManagedOperation, @ManagedAttribute)注解注册MBean到JMX实现监控java运行状态 参考 ...