题意:长度为n的序列,相邻两个或单独一个可以划分到一个组,每个元素最多处于一个组。

问恰好分割成k(1<=k<=m)段有多少种方案?

标程:

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=;
const int rt=;
const int N=;
int l,_n,pos[N],n,k,a[N],b[N],c[N],x1[N],x2[N],x3[N],x4[N],w[N],wn,inv_n;
int ksm(int x,int y)
{
int res=;
while (y) {if (y&) res=(ll)res*x%mod; x=(ll)x*x%mod; y>>=;}
return res;
}
void init(int n)
{
l=;
while ((<<l)<=n) l++;//注意位长的处理,判断条件是(1<<l)<=n
_n=<<l;wn=ksm(rt,<<-l);
w[]=;inv_n=ksm(_n,mod-);
for (int i=;i<_n;i++)
w[i]=(ll)w[i-]*wn%mod,pos[i]=(i&)?pos[i-]|(<<(l-)):pos[i>>]>>;
}
void fft(int *a,int op)
{
for (int i=;i<_n;i++) if (i<pos[i]) swap(a[i],a[pos[i]]);
int len=,id=_n;
for (int i=;i<l;i++)
{
int wn=w[id>>=];
for (int j=;j<_n;j+=len*)
for (int k=j,w=;k<j+len;k++)
{
int l=a[k],r=(ll)a[k+len]*w%mod;
a[k]=((ll)l+r)%mod;a[k+len]=((ll)l-r+mod)%mod;
w=(ll)w*wn%mod;
}
len<<=;
}
if (op==-) {
reverse(a+,a+_n);
for (int i=;i<_n;i++) a[i]=(ll)a[i]*inv_n%mod;
}
}
void merge(int *a,int *b,int *c)
{
c[]=;
for (int i=;i<=k;i++) c[i]=((ll)((ll)b[i]+b[i-])%mod+a[i-])%mod;
for (int i=k+;i<_n;i++) c[i]=;
}
void solve(int n)
{
if (n==)
{
a[]=;for (int i=;i<_n;i++) a[i]=;
b[]=b[]=;for (int i=;i<_n;i++) b[i]=;
return;
}
if (n==)
{
a[]=a[]=;for (int i=;i<_n;i++) a[i]=;
b[]=b[]=;b[]=;for (int i=;i<_n;i++) b[i]=;
return;
}
solve(n/-);
merge(a,b,c);
for (int i=k+;i<_n;i++) a[i]=b[i]=;
fft(a,);fft(b,);fft(c,);
for (int i=;i<_n;i++)
{
x1[i]=(ll)a[i]*a[i]%mod;
x2[i]=(ll)b[i]*b[i]%mod;
x3[i]=(ll)a[i]*b[i]%mod;
x4[i]=(ll)b[i]*c[i]%mod;
}
fft(x1,-);fft(x2,-);fft(x3,-);fft(x4,-);
for (int i=;i<_n;i++)//从1开始,注意边界
x2[i]=((ll)x2[i]+x1[i-])%mod,x4[i]=((ll)x4[i]+x3[i-])%mod;
if (n&)
{
merge(x2,x4,b);
for (int i=;i<_n;i++) a[i]=x4[i];
}else
for (int i=;i<_n;i++) a[i]=x2[i],b[i]=x4[i];
}
int main()
{
scanf("%d%d",&n,&k);
init(*k+); solve(n);
for (int i=;i<=k;i++) printf("%d ",a[i]);
puts("");
return ;
}

题解:fft+分治+dp

可以得到递推式:f[i(元素数)][j(段数)]=f[i-1][j-1]+f[i-2][j-1]+f[i-1][j]。

f(n)=f(n-1)*(1+x)+f(n-2)*x.

一个方法是带权斐波那契通项展开,并不会多项式开根。

另一个方法,考虑f(a+b)=f(a)*f(b)+f(a-1)*f(b-1)*x。(根据在a,b处能否断开讨论)

分治下去,f(i),f(i+1)->f(i+2) f(2i+2)=f(i+1)*f(i+1)+f(i)*f(i)*x

f(2i+3)=f(i+1)*f(i+2)+f(i)*f(i+1)*x  f(2i+4)=f(i+2)*f(i+2)+f(i+1)*f(i+1)*x

注意n的奇偶要讨论,m以后的k不用计算。时间复杂度O(mlog^2(m))。

CF755G PolandBall and Many Other Balls/soj 57送饮料的更多相关文章

  1. 题解-CF755G PolandBall and Many Other Balls

    题面 CF755G PolandBall and Many Other Balls 给定 \(n\) 和 \(m\).有一排 \(n\) 个球,求对于每个 \(1\le k\le m\),选出 \(k ...

  2. CF755G PolandBall and Many Other Balls 题解

    从神 Karry 的题单过来的,然后自己瞎 yy 了一个方法,看题解区里没有,便来写一个题解 一个常数和复杂度都很大的题解 令 \(dp_{i,j}\) 为 在 \(i\) 个球中选 \(j\) 组的 ...

  3. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ

    因为垃圾电脑太卡了就重开了一个... 前传:多项式Ⅰ u1s1 我预感还会有Ⅲ 多项式基础操作: 例题: 26. CF438E The Child and Binary Tree 感觉这题作为第一题还 ...

  4. POJ 3687 Labeling Balls()

    Labeling Balls Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9641 Accepted: 2636 Descri ...

  5. Soj题目分类

    -----------------------------最优化问题------------------------------------- ----------------------常规动态规划 ...

  6. codeforces 755C. PolandBall and Forest

    C. PolandBall and Forest time limit per test 1 second memory limit per test 256 megabytes input stan ...

  7. codeforces 755F F. PolandBall and Gifts(贪心+多重背包)

    题目链接: F. PolandBall and Gifts time limit per test 1.5 seconds memory limit per test 256 megabytes in ...

  8. Codeforces 755 F. PolandBall and Gifts 多重背包+贪心

    F. PolandBall and Gifts   It's Christmas time! PolandBall and his friends will be giving themselves ...

  9. 【codeforces 755B】PolandBall and Game

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

随机推荐

  1. String转list

    String l = "63, 47, 51, 35, 36, 52, 37, 53, 38, 54, 39, 55, 40, 56, 41, 57, 42";List<In ...

  2. C基础学习记录

    函数 1:子函数定义的变量只在调用的时候才会分配空间,调用结束后会收回空间. 2:在调用子函数时只会向函数传递值,是单向传递的. 3.返回值的类型一般与函数的类型一致,如果不一致会以函数类型为准. 4 ...

  3. thrift 的required、optional探究

    原因 经常使用thrift来编写rpc通信,但是对下面两个问题还是有些疑惑 thrift 的required.optional和不写有什么区别 optional不设置isset的话被传输后值? 实验 ...

  4. STM32中使能时钟的目的

    首先强调:时钟使能必须在外设初始化之前!!!!!!! 在这引用一个解释, “ARM的芯片,外设通常都是给了时钟后才能设置它的寄存器(即才能使用这个外设). STM32.LPC1XXX等等都是这样,这么 ...

  5. 40th 要掀桌子么 还是尬坐吧

    今日学习精华:     面向对象编程里面有一句  非常经典的描述:-----通过类实例化一个对象,通过对象调方法-----   注意:对象调用的  方法 ,即 函数一定要有  参数      def  ...

  6. Hadoop常用端口和定义方法

    Hadoop集群的各部分一般都会使用到多个端口,有些是daemon之间进行交互之用,有些是用于RPC访问以及HTTP访问.而随着Hadoop周边组件的增多,完全记不住哪个端口对应哪个应用,特收集记录如 ...

  7. Magento开启模板路径提示

    Magento的模板就好像搭积木一样,一个一个区块累加为一层,一层一层嵌套为一个整体,看起来结构相当复杂.虽然大部分模板文件路径在page.xml等文件中能找到,但是还是有部分是系统自带的.在上面并没 ...

  8. J2EE学习篇之--JDBC详解

    今天我们来说一下关于JDBC的相关知识,关于JDBC我想大家都不陌生了,而且我记得早就开始使用它了,记得那是大二的时候做课程设计,但是那时候是为了完成任务,所以遇到问题就google,那时候也没有时间 ...

  9. (转)OpenFire源码学习之二十七:Smack源码解析

    转:http://blog.csdn.net/huwenfeng_2011/article/details/43484199 Smack Smack是一个用于和XMPP服务器通信的类库,由此可以实现即 ...

  10. css布局方面小结

    1 ####css选择器 1 .left-word.moreinfor{} 这样是找不到选择器的.中间需要一个空格 但是div.moreinfor 是可以的. 2 max-width的作用: p元素只 ...