题目链接:https://www.luogu.org/problem/P2590

树链剖分模板题。

剖分过程要用到如下7个值:

  • fa[u]:u的父节点编号;
  • dep[u]:u的深度;
  • size[u]:u为根的子树中节点总数;
  • son[u]:u的重儿子;
  • top[u]:u所在的重链的顶部节点;
  • seg[u]:u在线段树中的位置;
  • rev[u]:seg的倒置,即rev[seg[u]] == u

然后套线段树模板实现区间最值、区间和,及单点更新操作。

实现代码如下:

#include <bits/stdc++.h>
using namespace std;
#define INF (1<<29)
const int maxn = 30030;
int fa[maxn],
dep[maxn],
size[maxn],
son[maxn],
top[maxn],
seg[maxn], seg_cnt,
rev[maxn],
n, w[maxn], maxv[maxn<<2], sumv[maxn<<2];
vector<int> g[maxn];
void dfs1(int u, int p) {
size[u] = 1;
for (vector<int>::iterator it = g[u].begin(); it != g[u].end(); it ++) {
int v = (*it);
if (v == p) continue;
fa[v] = u;
dep[v] = dep[u] + 1;
dfs1(v, u);
size[u] += size[v];
if (size[v] >size[son[u]]) son[u] = v;
}
}
void dfs2(int u, int tp) {
seg[u] = ++seg_cnt;
rev[seg_cnt] = u;
top[u] = tp;
if (son[u]) dfs2(son[u], tp);
for (vector<int>::iterator it = g[u].begin(); it != g[u].end(); it ++) {
int v = (*it);
if (v == fa[u] || v == son[u]) continue;
dfs2(v, v);
}
}
#define lson l, mid, rt<<1
#define rson mid+1, r, rt<<1|1
void push_up(int rt) {
sumv[rt] = sumv[rt<<1] +sumv[rt<<1|1];
maxv[rt] = max(maxv[rt<<1], maxv[rt<<1|1]);
}
void build(int l, int r, int rt) {
int mid = (l + r) / 2;
if (l == r) {
sumv[rt] = maxv[rt] = w[rev[l]];
return;
}
build(lson); build(rson);
push_up(rt);
}
void update(int p, int v, int l, int r, int rt) {
if (l == r) {
sumv[rt] = maxv[rt] = v;
return;
}
int mid = (l + r) / 2;
if (p <= mid) update(p, v, lson);
else update(p, v, rson);
push_up(rt);
}
int query_max(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) return maxv[rt];
int mid = (l + r) / 2, tmp = -INF;
if (L <= mid) tmp = max(tmp, query_max(L, R, lson));
if (R > mid) tmp = max(tmp, query_max(L, R, rson));
return tmp;
}
int query_sum(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) return sumv[rt];
int mid = (l + r) / 2, tmp = 0;
if (L <= mid) tmp += query_sum(L, R, lson);
if (R > mid) tmp += query_sum(L, R, rson);
return tmp;
}
int ask_max(int u, int v) {
int res = -INF;
while (top[u] != top[v]) {
if (dep[top[u]] < dep[top[v]]) swap(u, v);
res = max(res, query_max(seg[top[u]], seg[u], 1, n, 1));
u = fa[top[u]];
}
if (dep[u] < dep[v]) swap(u, v);
res = max(res, query_max(seg[v], seg[u], 1, n, 1));
return res;
}
int ask_sum(int u, int v) {
int res = 0;
while (top[u] != top[v]) {
if (dep[top[u]] < dep[top[v]]) swap(u, v);
res += query_sum(seg[top[u]], seg[u], 1, n, 1);
u = fa[top[u]];
}
if (dep[u] < dep[v]) swap(u, v);
res += query_sum(seg[v], seg[u], 1, n, 1);
return res;
}
int m;
string s;
int main() {
cin >> n;
for (int i = 1; i < n; i ++) {
int u, v;
cin >> u >> v;
g[u].push_back(v);
g[v].push_back(u);
}
for (int i = 1; i <= n; i ++) cin >> w[i];
dep[1] = fa[1] = 1;
dfs1(1, -1);
dfs2(1, 1);
build(1, n, 1);
cin >> m;
while (m --) {
int u, v;
cin >> s >> u >> v;
if (s == "CHANGE") update(seg[u], v, 1, n, 1);
else if (s == "QMAX") cout << ask_max(u, v) << endl;
else cout << ask_sum(u, v) << endl;
}
return 0;
}

洛谷P2590 [ZJOI2008]树的统计 题解 树链剖分+线段树的更多相关文章

  1. 洛谷P3313 [SDOI2014]旅行 题解 树链剖分+线段树动态开点

    题目链接:https://www.luogu.org/problem/P3313 这道题目就是树链剖分+线段树动态开点. 然后做这道题目之前我们先来看一道不考虑树链剖分之后完全相同的线段树动态开点的题 ...

  2. 洛谷P2486 [SDOI2011]染色 题解 树链剖分+线段树

    题目链接:https://www.luogu.org/problem/P2486 首先这是一道树链剖分+线段树的题. 线段树部分和 codedecision P1112 区间连续段 一模一样,所以我们 ...

  3. BZOJ.1036 [ZJOI2008]树的统计Count ( 点权树链剖分 线段树维护和与最值)

    BZOJ.1036 [ZJOI2008]树的统计Count (树链剖分 线段树维护和与最值) 题意分析 (题目图片来自于 这里) 第一道树链剖分的题目,谈一下自己的理解. 树链剖分能解决的问题是,题目 ...

  4. 【bzoj1036】树的统计[ZJOI2008]树链剖分+线段树

    题目传送门:1036: [ZJOI2008]树的统计Count 这道题是我第一次打树剖的板子,虽然代码有点长,但是“打起来很爽”,而且整道题只花了不到1.5h+,还是一遍过样例!一次提交AC!(难道前 ...

  5. 洛谷P4092 [HEOI2016/TJOI2016]树 并查集/树链剖分+线段树

    正解:并查集/树链剖分+线段树 解题报告: 传送门 感觉并查集的那个方法挺妙的,,,刚好又要复习下树剖了,所以就写个题解好了QwQ 首先说下并查集的方法趴QwQ 首先离线,读入所有操作,然后dfs遍历 ...

  6. BZOJ.1758.[WC2010]重建计划(分数规划 点分治 单调队列/长链剖分 线段树)

    题目链接 BZOJ 洛谷 点分治 单调队列: 二分答案,然后判断是否存在一条长度在\([L,R]\)的路径满足权值和非负.可以点分治. 对于(距当前根节点)深度为\(d\)的一条路径,可以用其它子树深 ...

  7. 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树

    [BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...

  8. Aizu 2450 Do use segment tree 树链剖分+线段树

    Do use segment tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.bnuoj.com/v3/problem_show ...

  9. POJ3237 Tree 树链剖分 线段树

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3237 题意概括 Description 给你由N个结点组成的树.树的节点被编号为1到N,边被编号为1 ...

  10. 【CF725G】Messages on a Tree 树链剖分+线段树

    [CF725G]Messages on a Tree 题意:给你一棵n+1个节点的树,0号节点是树根,在编号为1到n的节点上各有一只跳蚤,0号节点是跳蚤国王.现在一些跳蚤要给跳蚤国王发信息.具体的信息 ...

随机推荐

  1. 关于background-image调整大小和位置的方法笔记

    遇到background-image的问题有点多,直接上网搜资料自己整理一下 <!DOCTYPE html> <html lang="en"> <he ...

  2. const、引用与指针

    前提 我们忽略掉了相同类型是否可以赋值的情况(我到现在的学习里都还可以相互赋值),以及类型兼容的情况.只考虑const.&.*等修饰符带来的影响 类型兼容: 强制类型转换 基类与子类间的兼容 ...

  3. Ubuntu查找通过apt命令已安装软件

    方法一 apt list --installed 方法二 dpkg -l

  4. Oracle企业管理框架

    oracle管理服务器 是一个基于java的web构件,该构件是dba用来监视和控制oracle企业框架内各个受管理目标的实际界面 oracle储存库 已收集到并与受管理目标有关的配置和监视信息被存储 ...

  5. Leetcode883.Projection Area of 3D Shapes三维形体投影面积

    在 N * N 的网格中,我们放置了一些与 x,y,z 三轴对齐的 1 * 1 * 1 立方体. 每个值 v = grid[i][j] 表示 v 个正方体叠放在单元格 (i, j) 上. 现在,我们查 ...

  6. 页面滚动事件和利用JS实现回到顶部效果

    页面滚动 事件:window.onscroll, 获得页面滚动位置:document.body.scrollTop: HTML代码: 这里注意此处逻辑,大于500就显示,否则就隐藏,还有注意如果变量名 ...

  7. c:if标签判断不为空和其他的值判断

    今天用<c:if test=""></c:if>标签时 <c:if test="${sl.chc_status==1 }"> ...

  8. HTML5环形音乐播放器

    在线演示 本地下载

  9. 怎样做一个iOS App的启动分层引导动画?

    一. 为什么要写这篇文章? 这是一个很古老的话题,从两年前新浪微博开始使用多层动画制作iOS App的启动引导页让人眼前一亮(当然,微博是不是历史第一个这个问题值得商榷)之后,各种类型的引导页层出不穷 ...

  10. Linux进程管理(三、 线程)

    // ---- refer glibc, pthread_create.c ----// int __pthread_create_2_0 (newthread, attr, start_routin ...