题解:

其实就是求1-n之中拥有最多约数的数

一个数x的质因数分解为p1^e1*p2^e2*...*pn^en,则正因数的个数为(e1+1)(e2+1)...(en+1)

那么发现,正因数的个数和p没有关系

那么p越小越好

于是,若x是最好的,且x=p1^e1*p2^e2*...*pn^en,则e1<e2<e3<..en,且p1=2,p2=3....

那么这个p就不会很大,所以枚举的范围就大大缩小了

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef pair<int,int> PII;
const int MX=1e2+;
const int INF=0x3f3f3f3f;
int ans;
LL id,n,prime[MX],psz,vis[MX];
void prime_init()
{
vis[]=;
for(int i=;i<MX;i++)
{
if(vis[i])continue;
prime[++psz]=i;
for(int j=*i;j<MX;j+=i)vis[j]=;
}
psz=;
}
void DFS(LL s,int cnt,int p,int bo)
{
if(cnt>ans||(cnt==ans&&s<id))
{
ans=cnt;
id=s;
}
for(int i=;i<=bo&&(double)s*prime[p]<=n;i++)
{
s*=prime[p];
DFS(s,cnt*(i+),p+,i);
}
}
int main()
{
prime_init();
scanf("%I64d",&n);
ans=id=;
DFS(,,,);
printf("%d\n",id);
}

bzoj1053&&51nod1060的更多相关文章

  1. 【bzoj1053】反素数

    [bzoj1053]反素数 题意 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例 ...

  2. BZOJ1053 [HAOI2007]反素数ant 数论

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 传送门 - BZOJ1053 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正 ...

  3. 【BZOJ1053】 反素数ant

    BZOJ1053 反素数ant 我们先考虑唯一分解定理求出约数个数: \(x=a_1^{p_1}a_2^{p_2}a_3^{p_3}...a_k^{p_k}\) 然后\(num=\Pi_{i=1}^k ...

  4. 【BZOJ1053】[HAOI2007]反素数(搜索)

    [BZOJ1053][HAOI2007]反素数(搜索) 题面 BZOJ 洛谷 题解 大力猜一下用不了几个质因子,那么随便爆搜一下就好了. #include<iostream> #inclu ...

  5. 【BZOJ1053】[HAOI2007]反素数

    [BZOJ1053][HAOI2007]反素数 题面 bzoj 洛谷 题解 可以从反素数的定义看出小于等于\(x\)的最大反素数一定是约数个数最多且最小的那个 可以枚举所有的质因数来求反素数,但还是跑 ...

  6. 【BZOJ1053】[HAOI2007]反素数ant 暴力

    [BZOJ1053][HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) ...

  7. bzoj1053: [HAOI2007]反素数ant

    51nod有一道类似的题...我至今仍然不会写暴搜!!! #include<cstdio> #include<cstring> #include<iostream> ...

  8. bzoj1053

    不难发现,要让约数尽可能多,那么素因子越小的的指数一定越大可能的素因数的种类也不超过10种然后直接暴搜即可 ..] ,,,,,,,,,); var n,ant,ans:int64; procedure ...

  9. [BZOJ1053] [HAOI2007] 反素数ant (搜索)

    Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数 ...

随机推荐

  1. Python3基础 函数 未指定返回值,返回NONE

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...

  2. Java8中数据流的使用

    Code: @Data @ToString @NoArgsConstructor @AllArgsConstructor public class Employee { private Integer ...

  3. POJ 2155 Matrix (二维树状数组)题解

    思路: 没想到二维树状数组和一维的比只差了一行,update单点更新,query求和 这里的函数用法和平时不一样,query直接算出来就是某点的值,怎么做到的呢? 我们在更新的时候不止更新一个点,而是 ...

  4. 51nod 1137 矩阵乘法

    基本的矩阵乘法 中间for(int j=0;i<n;i++)  //这里写错了   应该是j<n 晚上果然  效率不行 等会早点儿睡 //矩阵乘法 就是 两个矩阵 第一个矩阵的列 等与 第 ...

  5. hdu 2586 How far away ? 带权lca

    How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) P ...

  6. OpenGL遮挡查询

    转自:http://www.cnblogs.com/mazhenyu/p/5083026.html 在一个场景中,如果有有些物体被其他物体遮住了不可见.那么我们就不需要绘制它.在复杂的场景中,这可以减 ...

  7. 《剑指offer》第四题(二维数组中的查找)

    // 二维数组中的查找 // 题目:在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按 // 照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个 // 整数,判断数组 ...

  8. js 几个重要的特性

    背景: 语法借鉴    java 函数借鉴    scheme 原型继承借鉴    self 正则表达式借鉴    Perl 1.动态语言 函数的定义和调用  形参与实参不需要一致 形参可由 argu ...

  9. 8天掌握EF的Code First开发

    C#高级知识点&(ABP框架理论学习高级篇)——白金版 http://www.cnblogs.com/farb/p/ABPAdvancedTheoryContent.html

  10. Ubuntu 16.04下docker ce的安装

    卸载版本的docker sudo apt-get remove docker docker-engine docker.io 安装可选内核模块 从 Ubuntu 14.04 开始,一部分内核模块移到了 ...