1.  Approximation
   Probabilistic model  中的一个 central task :给定一组observation X 后,计算latent variables Z 的后验概率P( Z | X)。以及一些expectation with respect to P(Z| X)。很多情况下P( Z | X)是analytically  intractable 的。这就需要有approximation 方法。
   Latent variable :只要没有观察到的都归为 latent variable ,比如在 Bayesian 中的parameter(它们是random variable )。在Probablistic Graphica l Model 的观点看,parameter和狭义的latent variable 的不同就是,parameter的个数和观察到的数据的个数无关,但是狭义的latent
variable 则与其相关。
   Approximation 方法:分为deterministic 方法和stochatic 方法。前者包括 Laplace approximation ,variational inference 等;后者包括 MCMC sampling 等。

2. Variational inference
   问题:一个 probablistic model   P( X, Z ),含有observed variables X={x1,x2...} 和latent variable Z={z1,z2...}
   目的:为后验概率 P( Z | X)和model evidence P(X) 找approximation 。
   思路:
   引入一个分布q(Z) ,从而把P(X)分解开来:ln p(x) = L(q) + KL(q||p)。其中

  

注意,现在要用q(Z) 来近似P( Z | X)。如何衡量二者的相近程度呢?上式中的KL(q||p) 正是一个合适的指标。因此,现在就要找到一个q(Z),使KL(q||p)  最小化。

然后,P( Z|X)本身就是intractable 的,所以直接难以找到使 KL(q||p)  最小化的 q( Z )。但是如果joint  distribution   P( X,   Z )更容易处理,那么就有了一个思路:由于ln p(X)的值跟q( Z )的选取无关,所以最小化KL(q||p) ,等价于最大化 L(q) 。

假设:q( Z )的范围是极其大的,为了便于求出最大化L(q) 的解,需要给q( Z )一些限制。给予限制的原则是兼顾tractable 与flexible 。常用的限制/ 假设是:

  

即分解性质。其中的zi构成Z 的一个不交子集族.

q( Z )被称为 variational distribution。

Approximate Inference的更多相关文章

  1. PRML读书会第十章 Approximate Inference(近似推断,变分推断,KL散度,平均场, Mean Field )

    主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:02:04 我们在前面看到,概率推断的核心任务就是计算某分布下的某个函数的期望.或者计算边缘概率分布.条件 ...

  2. Variational Approximate Inference

    图模型(Graphical Models)是一个用来表示概率模型的工具.所谓概率模型,也就是在刻画一组随机变量之间的相互关系.图模型就是用来显式地刻画这些变量之间关系的.在 图模型中,每个变量由图中的 ...

  3. 近似推断(Approximate Inference)

    1.变分推断(Variational Inference) 1.1.分解概率分布(Factorized distributions) 1.2.分解近似的性质(Properties of factori ...

  4. Approximate Inference 近似推断

    引入 统计推断的核心任务,是观察到一些X(可见变量戒可观察变量)之后计算隐变量Z的后验分布p(Z|X),以及在这个后验分布下计算我们所需要的函数的期望.比如,讲EM时,我们曾计算过对数似然函数在隐变量 ...

  5. paper 118:计算机视觉、模式识别、机器学习常用牛人主页链接

    牛人主页(主页有很多论文代码) Serge Belongie at UC San Diego Antonio Torralba at MIT Alexei Ffros at CMU Ce Liu at ...

  6. Cognition math based on Factor Space (2016.05)

    Cognition math based on Factor Space Wang P Z1, Ouyang H2, Zhong Y X3, He H C4 1Intelligence Enginee ...

  7. 论文笔记之:Generative Adversarial Nets

    Generative Adversarial Nets NIPS 2014  摘要:本文通过对抗过程,提出了一种新的框架来预测产生式模型,我们同时训练两个模型:一个产生式模型 G,该模型可以抓住数据分 ...

  8. (转) ICCV 2015:21篇最火爆研究论文

          ICCV 2015:21篇最火爆研究论文 ICCV 2015: Twenty one hottest research papers   “Geometry vs Recognition” ...

  9. 【综述】(MIT博士)林达华老师-"概率模型与计算机视觉”

    [综述](MIT博士)林达华老师-"概率模型与计算机视觉” 距上一次邀请中国科学院的樊彬老师为我们撰写图像特征描述符方面的综述(http://www.sigvc.org/bbs/thread ...

随机推荐

  1. css - 文字元素等的美化效果代码汇总(更新中...)

    投影的设置 -webkit-box-reflect: below 0px -webkit-gradient(linear, left top, left bottom, from(transparen ...

  2. django的queryset和objects对象

    1. queryset是查询集,就是传到服务器上的url里面的内容.Django会对查询返回的结果集QerySet进行缓存,这里是为了提高查询效率. 也就是说,在你创建一个QuerySet对象的时候, ...

  3. T49

    明天参加媳妇朋友的婚礼.今天晚上的火车,下班后匆忙的打了个的,正好到的哥交接班的时间拦了几辆车都不拉火车站!无奈-五分钟后打上车接上媳妇去火车站!正值五中学生放假路上各种堵!安阳这四线城市什么时候变的 ...

  4. TOP100summit 2017:亚马逊Echo音箱能够语音识人,华人工程师揭秘设计原理

      本文编辑:Cynthia 2017年,人工智能的消费产品落地聚焦在了智能音箱上,谷歌.亚马逊纷纷推出智能音箱产品,国内的阿里巴巴推出天猫精灵,小米推出小米AI音箱.智能音箱通过语音可以发出指令,未 ...

  5. 2.1TF模型持久化

    目前tf只能保存模型中的variable变量,整个模型还不能保存,版本1.x 保存模型代码 import tensorflow as tf import numpy as np # Save to f ...

  6. Anaconda中配置Pyspark的Spark开发环境

    1.windows下载并安装Anaconda集成环境 URL:https://www.continuum.io/downloads 2.在控制台中测试ipython是否启动正常 3.安装JDK 3.1 ...

  7. 【转】MVC中的扩展点

    原文地址:http://www.cnblogs.com/xfrog/tag/MVC/      MVC中的扩展点(十)辅助方法   MVC中的扩展点(九)验证   MVC中的扩展点(八)模型绑定   ...

  8. POJ_3616_Milking Time

    Milking Time Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10841   Accepted: 4564 Des ...

  9. IntelliJ IDEA 2018.3注册码

    修改hosts windows,打开C:/Windows/System32/drivers/etc/hosts linux打开 vi /etc/hosts 输入: 0.0.0.0 account.je ...

  10. 源码 time sleep

    C:\Users\Administrator\.PyCharm2017.1\system\python_stubs\2083891348\time.py def sleep(seconds): # r ...