1.  Approximation
   Probabilistic model  中的一个 central task :给定一组observation X 后,计算latent variables Z 的后验概率P( Z | X)。以及一些expectation with respect to P(Z| X)。很多情况下P( Z | X)是analytically  intractable 的。这就需要有approximation 方法。
   Latent variable :只要没有观察到的都归为 latent variable ,比如在 Bayesian 中的parameter(它们是random variable )。在Probablistic Graphica l Model 的观点看,parameter和狭义的latent variable 的不同就是,parameter的个数和观察到的数据的个数无关,但是狭义的latent
variable 则与其相关。
   Approximation 方法:分为deterministic 方法和stochatic 方法。前者包括 Laplace approximation ,variational inference 等;后者包括 MCMC sampling 等。

2. Variational inference
   问题:一个 probablistic model   P( X, Z ),含有observed variables X={x1,x2...} 和latent variable Z={z1,z2...}
   目的:为后验概率 P( Z | X)和model evidence P(X) 找approximation 。
   思路:
   引入一个分布q(Z) ,从而把P(X)分解开来:ln p(x) = L(q) + KL(q||p)。其中

  

注意,现在要用q(Z) 来近似P( Z | X)。如何衡量二者的相近程度呢?上式中的KL(q||p) 正是一个合适的指标。因此,现在就要找到一个q(Z),使KL(q||p)  最小化。

然后,P( Z|X)本身就是intractable 的,所以直接难以找到使 KL(q||p)  最小化的 q( Z )。但是如果joint  distribution   P( X,   Z )更容易处理,那么就有了一个思路:由于ln p(X)的值跟q( Z )的选取无关,所以最小化KL(q||p) ,等价于最大化 L(q) 。

假设:q( Z )的范围是极其大的,为了便于求出最大化L(q) 的解,需要给q( Z )一些限制。给予限制的原则是兼顾tractable 与flexible 。常用的限制/ 假设是:

  

即分解性质。其中的zi构成Z 的一个不交子集族.

q( Z )被称为 variational distribution。

Approximate Inference的更多相关文章

  1. PRML读书会第十章 Approximate Inference(近似推断,变分推断,KL散度,平均场, Mean Field )

    主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:02:04 我们在前面看到,概率推断的核心任务就是计算某分布下的某个函数的期望.或者计算边缘概率分布.条件 ...

  2. Variational Approximate Inference

    图模型(Graphical Models)是一个用来表示概率模型的工具.所谓概率模型,也就是在刻画一组随机变量之间的相互关系.图模型就是用来显式地刻画这些变量之间关系的.在 图模型中,每个变量由图中的 ...

  3. 近似推断(Approximate Inference)

    1.变分推断(Variational Inference) 1.1.分解概率分布(Factorized distributions) 1.2.分解近似的性质(Properties of factori ...

  4. Approximate Inference 近似推断

    引入 统计推断的核心任务,是观察到一些X(可见变量戒可观察变量)之后计算隐变量Z的后验分布p(Z|X),以及在这个后验分布下计算我们所需要的函数的期望.比如,讲EM时,我们曾计算过对数似然函数在隐变量 ...

  5. paper 118:计算机视觉、模式识别、机器学习常用牛人主页链接

    牛人主页(主页有很多论文代码) Serge Belongie at UC San Diego Antonio Torralba at MIT Alexei Ffros at CMU Ce Liu at ...

  6. Cognition math based on Factor Space (2016.05)

    Cognition math based on Factor Space Wang P Z1, Ouyang H2, Zhong Y X3, He H C4 1Intelligence Enginee ...

  7. 论文笔记之:Generative Adversarial Nets

    Generative Adversarial Nets NIPS 2014  摘要:本文通过对抗过程,提出了一种新的框架来预测产生式模型,我们同时训练两个模型:一个产生式模型 G,该模型可以抓住数据分 ...

  8. (转) ICCV 2015:21篇最火爆研究论文

          ICCV 2015:21篇最火爆研究论文 ICCV 2015: Twenty one hottest research papers   “Geometry vs Recognition” ...

  9. 【综述】(MIT博士)林达华老师-"概率模型与计算机视觉”

    [综述](MIT博士)林达华老师-"概率模型与计算机视觉” 距上一次邀请中国科学院的樊彬老师为我们撰写图像特征描述符方面的综述(http://www.sigvc.org/bbs/thread ...

随机推荐

  1. Ubuntu 14.04 DNS 配置

    最近得到一个比较好用的DNS,每次重启后都修改DNS配置文件 /etc/resolv.conf 重启就会失效 从网上得知 /etc/resolv.conf中的DNS配置是从/etc/resolvcon ...

  2. C#生成随机验证码例子

    C#生成随机验证码例子: 前端: <tr> <td width=" align="center" valign="top"> ...

  3. Google APK下载

    在线下载google play中apk的网站 1.http://apps.evozi.com/apk-downloader 2.http://downloader-apk.com/ 3.http:// ...

  4. 第二步 (仅供参考) sencha touch 使用cmd打包apk

    最新版本的cmd可以直接将sencha touch项目打包成本地应用,不过还有很多不足,本文仅供参考 通过sencha app build native命令可以直接将项目打包成本地应用,不过在命令运行 ...

  5. mybatis generator如何定制JavaTypeResolver,使smallint类型的数据库字段在po中的类型为Integer?

    一.问题概述 忙了一段时间的jenkins持续集成,又要开始开发任务了.这两天在用mybatis generator来逆向生成dao层工程. 其中一个问题在于,组长在设计表的时候,不少枚举使用了sma ...

  6. C语言程序设计--宏和预处理

    C语言宏 宏定义常量 #include <stdio.h> #define SIZE 100 #define BANNER "WARNING:" int main(vo ...

  7. GitStack系统RCE漏洞学习

    漏洞简介 漏洞简情 漏洞程序 GitStack 影响版本 <=2.3.10 漏洞类型 RCE 漏洞评价 高危 漏洞编号 CVE-2018-5955 漏洞程序介绍 GitStack是一款基于Pyt ...

  8. 23种设计模式之命令模式(Command)

    命令模式是一种对象的行为型模式,类似于传统程序设计方法中的回调机制,它将一个请求封装为一个对象,从而使得可用不同的请求对客户进行参数化:对请求排队或者记录请求日志,以及支持可撤销的操作.命令模式是对命 ...

  9. 【CF739E】Gosha is hunting 贪心

    [CF739E]Gosha is hunting 题意:有n个小精灵,你有a个普通球和b个超级球,用普通球抓住第i只小精灵的概率为$A_i$,用超级球抓住第i只小精灵的概率为$u_i$.你必须一开始就 ...

  10. Node学习HTTP模块(HTTP 服务器与客户端)

    Node学习HTTP模块(HTTP 服务器与客户端) Node.js 标准库提供了 http 模块,其中封装了一个高效的 HTTP 服务器和一个简易的HTTP 客户端.http.Server 是一个基 ...