吴裕雄 数据挖掘与分析案例实战(12)——SVM模型的应用
import pandas as pd
# 导入第三方模块
from sklearn import svm
from sklearn import model_selection
from sklearn import metrics
# 读取外部数据
letters = pd.read_csv(r'F:\\python_Data_analysis_and_mining\\13\\letterdata.csv')
print(letters.shape)
# 数据前5行
print(letters.head())
# 将数据拆分为训练集和测试集
predictors = letters.columns[1:]
X_train,X_test,y_train,y_test = model_selection.train_test_split(letters[predictors], letters.letter, test_size = 0.25, random_state = 1234)
# 使用网格搜索法,选择线性可分SVM“类”中的最佳C值
C=[0.05,0.1,0.5,1,2,5]
parameters = {'C':C}
grid_linear_svc = model_selection.GridSearchCV(estimator = svm.LinearSVC(),param_grid =parameters,scoring='accuracy',cv=5,verbose =1)
# 模型在训练数据集上的拟合
grid_linear_svc.fit(X_train,y_train)
# 返回交叉验证后的最佳参数值
print(grid_linear_svc.best_params_, grid_linear_svc.best_score_)
# 模型在测试集上的预测
pred_linear_svc = grid_linear_svc.predict(X_test)
# 模型的预测准确率
metrics.accuracy_score(y_test, pred_linear_svc)
# 使用网格搜索法,选择非线性SVM“类”中的最佳C值
kernel=['rbf','linear','poly','sigmoid']
C=[0.1,0.5,1,2,5]
parameters = {'kernel':kernel,'C':C}
grid_svc = model_selection.GridSearchCV(estimator = svm.SVC(),param_grid =parameters,scoring='accuracy',cv=5,verbose =1)
# 模型在训练数据集上的拟合
grid_svc.fit(X_train,y_train)
# 返回交叉验证后的最佳参数值
print(grid_svc.best_params_, grid_svc.best_score_)
# 模型在测试集上的预测
pred_svc = grid_svc.predict(X_test)
# 模型的预测准确率
metrics.accuracy_score(y_test,pred_svc)
# 读取外部数据
forestfires = pd.read_csv(r'F:\\python_Data_analysis_and_mining\\13\\forestfires.csv')
print(forestfires.shape)
# 数据前5行
print(forestfires.head())
# 删除day变量
forestfires.drop('day',axis = 1, inplace = True)
# 将月份作数值化处理
forestfires.month = pd.factorize(forestfires.month)[0]
# 预览数据前5行
print(forestfires.head())
# 导入第三方模块
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import norm
# 绘制森林烧毁面积的直方图
sns.distplot(forestfires.area, bins = 50, kde = True, fit = norm, hist_kws = {'color':'steelblue'},
kde_kws = {'color':'red', 'label':'Kernel Density'},
fit_kws = {'color':'black','label':'Nomal', 'linestyle':'--'})
# 显示图例
plt.legend()
# 显示图形
plt.show()
# 导入第三方模块
from sklearn import preprocessing
import numpy as np
from sklearn import neighbors
# 对area变量作对数变换
y = np.log1p(forestfires.area)
# 将X变量作标准化处理
predictors = forestfires.columns[:-1]
X = preprocessing.scale(forestfires[predictors])
print(X.shape)
print(X)
# 将数据拆分为训练集和测试集
X_train,X_test,y_train,y_test = model_selection.train_test_split(X, y, test_size = 0.25, random_state = 1234)
# 构建默认参数的SVM回归模型
svr = svm.SVR()
# 模型在训练数据集上的拟合
svr.fit(X_train,y_train)
# 模型在测试上的预测
pred_svr = svr.predict(X_test)
# 计算模型的MSE
a = metrics.mean_squared_error(y_test,pred_svr)
print(a)
# 使用网格搜索法,选择SVM回归中的最佳C值、epsilon值和gamma值
epsilon = np.arange(0.1,1.5,0.2)
C= np.arange(100,1000,200)
gamma = np.arange(0.001,0.01,0.002)
parameters = {'epsilon':epsilon,'C':C,'gamma':gamma}
grid_svr = model_selection.GridSearchCV(estimator = svm.SVR(),param_grid =parameters,
scoring='neg_mean_squared_error',cv=5,verbose =1, n_jobs=2)
# 模型在训练数据集上的拟合
grid_svr.fit(X_train,y_train)
# 返回交叉验证后的最佳参数值
print(grid_svr.best_params_, grid_svr.best_score_)
# 模型在测试集上的预测
pred_grid_svr = grid_svr.predict(X_test)
# 计算模型在测试集上的MSE值
print(metrics.mean_squared_error(y_test,pred_grid_svr))
吴裕雄 数据挖掘与分析案例实战(12)——SVM模型的应用的更多相关文章
- 吴裕雄 数据挖掘与分析案例实战(15)——DBSCAN与层次聚类分析
# 导入第三方模块import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as snsfr ...
- 吴裕雄 数据挖掘与分析案例实战(10)——KNN模型的应用
# 导入第三方包import pandas as pd # 导入数据Knowledge = pd.read_excel(r'F:\\python_Data_analysis_and_mining\\1 ...
- 吴裕雄 数据挖掘与分析案例实战(5)——python数据可视化
# 饼图的绘制# 导入第三方模块import matplotlibimport matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['S ...
- 吴裕雄 数据挖掘与分析案例实战(3)——python数值计算工具:Numpy
# 导入模块,并重命名为npimport numpy as np# 单个列表创建一维数组arr1 = np.array([3,10,8,7,34,11,28,72])print('一维数组:\n',a ...
- 吴裕雄 数据挖掘与分析案例实战(2)——python数据结构及方法、控制流、字符串处理、自定义函数
list1 = ['张三','男',33,'江苏','硕士','已婚',['身高178','体重72']]# 取出第一个元素print(list1[0])# 取出第四个元素print(list1[3] ...
- 吴裕雄 数据挖掘与分析案例实战(14)——Kmeans聚类分析
# 导入第三方包import pandas as pdimport numpy as np import matplotlib.pyplot as pltfrom sklearn.cluster im ...
- 吴裕雄 数据挖掘与分析案例实战(13)——GBDT模型的应用
# 导入第三方包import pandas as pdimport matplotlib.pyplot as plt # 读入数据default = pd.read_excel(r'F:\\pytho ...
- 吴裕雄 数据挖掘与分析案例实战(8)——Logistic回归分类模型
import numpy as npimport pandas as pdimport matplotlib.pyplot as plt # 自定义绘制ks曲线的函数def plot_ks(y_tes ...
- 吴裕雄 数据挖掘与分析案例实战(7)——岭回归与LASSO回归模型
# 导入第三方模块import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom sklearn import mod ...
随机推荐
- x86 openwrt虚拟路由代理上网
一.代理服务器设置 1.下载代理软件CCProxy 6.8 Build 2.设置如下 二.x86 路由设置 1.在/etc目录下编辑profile http_proxy= https_proxy= f ...
- BASIC-26_蓝桥杯_报时助手
示例代码: #include <stdio.h> void print(int x) { switch(x) { : printf("zero ");break; : ...
- Gitlab 项目上传
一,登陆gitab,新建reject Repository name: 仓库名称 Description(可选): 仓库描述介绍 Public, Private : 仓库权限(公开共享,私有或指定合作 ...
- Spring Cloud config之一:分布式配置中心入门介绍
Spring Cloud Config为服务端和客户端提供了分布式系统的外部化配置支持.配置服务器为各应用的所有环境提供了一个中心化的外部配置.它实现了对服务端和客户端对Spring Environm ...
- MYSQL ERROR 1045 (28000): Access denied for user (using password: YES)解决方案详细说明
1.首先这个问题出现的原因不详,可能是mysql的bug吧 2 解决步骤 1.首先停下mysql的服务 作者系统下命令为 /etc/init.d/mysqld stop 具体的停 ...
- chronyd时间服务器同步时间配置
chrony是两个用来维持计算机系统时钟准确性的程序,这两个程序命名为chronyd和chronyc. chronyd是一个在系统后台运行的守护进程.他根据网络上其他时间服务器时间来测量本机时间的偏移 ...
- 管理oracle的一些知识
管理一个oralce软件: 如何管理数据库,须知道什么知识. 1.安装:位置,字符集 2.建库:什么数据库名称 3.数据库启动: nomout:读参数文件,一些初始化设置信息 mount:读取控制文件 ...
- 布尔值运算&集合
示例:返回booleanli = [] li = {} li = () if not li: print(1) radiansdict.has_key(key) #如果键在字典dict里返回true, ...
- Python常量工具类
1.定义常量类constant.py # -*- coding: utf-8 -* """常量工具类 author: Jill usage: from constant ...
- nginx、TP框架实现兼容pathinfo和rewrite两种url访问方式
环境:centos7,yum安装的nginx1.10.php-fpm,tp3.2 本方法只需要配置nginx.conf的一个文件就可以支持pathinfo和rewrite两种url访问方式 vim / ...