import pandas as pd

# 导入第三方模块
from sklearn import svm
from sklearn import model_selection
from sklearn import metrics

# 读取外部数据
letters = pd.read_csv(r'F:\\python_Data_analysis_and_mining\\13\\letterdata.csv')
print(letters.shape)
# 数据前5行
print(letters.head())
# 将数据拆分为训练集和测试集
predictors = letters.columns[1:]
X_train,X_test,y_train,y_test = model_selection.train_test_split(letters[predictors], letters.letter, test_size = 0.25, random_state = 1234)
# 使用网格搜索法,选择线性可分SVM“类”中的最佳C值
C=[0.05,0.1,0.5,1,2,5]
parameters = {'C':C}
grid_linear_svc = model_selection.GridSearchCV(estimator = svm.LinearSVC(),param_grid =parameters,scoring='accuracy',cv=5,verbose =1)
# 模型在训练数据集上的拟合
grid_linear_svc.fit(X_train,y_train)
# 返回交叉验证后的最佳参数值
print(grid_linear_svc.best_params_, grid_linear_svc.best_score_)
# 模型在测试集上的预测
pred_linear_svc = grid_linear_svc.predict(X_test)
# 模型的预测准确率
metrics.accuracy_score(y_test, pred_linear_svc)

# 使用网格搜索法,选择非线性SVM“类”中的最佳C值
kernel=['rbf','linear','poly','sigmoid']
C=[0.1,0.5,1,2,5]
parameters = {'kernel':kernel,'C':C}
grid_svc = model_selection.GridSearchCV(estimator = svm.SVC(),param_grid =parameters,scoring='accuracy',cv=5,verbose =1)
# 模型在训练数据集上的拟合
grid_svc.fit(X_train,y_train)
# 返回交叉验证后的最佳参数值
print(grid_svc.best_params_, grid_svc.best_score_)

# 模型在测试集上的预测
pred_svc = grid_svc.predict(X_test)
# 模型的预测准确率
metrics.accuracy_score(y_test,pred_svc)

# 读取外部数据
forestfires = pd.read_csv(r'F:\\python_Data_analysis_and_mining\\13\\forestfires.csv')
print(forestfires.shape)
# 数据前5行
print(forestfires.head())
# 删除day变量
forestfires.drop('day',axis = 1, inplace = True)
# 将月份作数值化处理
forestfires.month = pd.factorize(forestfires.month)[0]
# 预览数据前5行
print(forestfires.head())

# 导入第三方模块
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import norm
# 绘制森林烧毁面积的直方图
sns.distplot(forestfires.area, bins = 50, kde = True, fit = norm, hist_kws = {'color':'steelblue'},
kde_kws = {'color':'red', 'label':'Kernel Density'},
fit_kws = {'color':'black','label':'Nomal', 'linestyle':'--'})
# 显示图例
plt.legend()
# 显示图形
plt.show()

# 导入第三方模块
from sklearn import preprocessing
import numpy as np
from sklearn import neighbors

# 对area变量作对数变换
y = np.log1p(forestfires.area)
# 将X变量作标准化处理
predictors = forestfires.columns[:-1]
X = preprocessing.scale(forestfires[predictors])
print(X.shape)
print(X)
# 将数据拆分为训练集和测试集
X_train,X_test,y_train,y_test = model_selection.train_test_split(X, y, test_size = 0.25, random_state = 1234)

# 构建默认参数的SVM回归模型
svr = svm.SVR()
# 模型在训练数据集上的拟合
svr.fit(X_train,y_train)
# 模型在测试上的预测
pred_svr = svr.predict(X_test)
# 计算模型的MSE
a = metrics.mean_squared_error(y_test,pred_svr)
print(a)
# 使用网格搜索法,选择SVM回归中的最佳C值、epsilon值和gamma值
epsilon = np.arange(0.1,1.5,0.2)
C= np.arange(100,1000,200)
gamma = np.arange(0.001,0.01,0.002)
parameters = {'epsilon':epsilon,'C':C,'gamma':gamma}
grid_svr = model_selection.GridSearchCV(estimator = svm.SVR(),param_grid =parameters,
scoring='neg_mean_squared_error',cv=5,verbose =1, n_jobs=2)
# 模型在训练数据集上的拟合
grid_svr.fit(X_train,y_train)
# 返回交叉验证后的最佳参数值
print(grid_svr.best_params_, grid_svr.best_score_)
# 模型在测试集上的预测
pred_grid_svr = grid_svr.predict(X_test)
# 计算模型在测试集上的MSE值
print(metrics.mean_squared_error(y_test,pred_grid_svr))

吴裕雄 数据挖掘与分析案例实战(12)——SVM模型的应用的更多相关文章

  1. 吴裕雄 数据挖掘与分析案例实战(15)——DBSCAN与层次聚类分析

    # 导入第三方模块import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as snsfr ...

  2. 吴裕雄 数据挖掘与分析案例实战(10)——KNN模型的应用

    # 导入第三方包import pandas as pd # 导入数据Knowledge = pd.read_excel(r'F:\\python_Data_analysis_and_mining\\1 ...

  3. 吴裕雄 数据挖掘与分析案例实战(5)——python数据可视化

    # 饼图的绘制# 导入第三方模块import matplotlibimport matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['S ...

  4. 吴裕雄 数据挖掘与分析案例实战(3)——python数值计算工具:Numpy

    # 导入模块,并重命名为npimport numpy as np# 单个列表创建一维数组arr1 = np.array([3,10,8,7,34,11,28,72])print('一维数组:\n',a ...

  5. 吴裕雄 数据挖掘与分析案例实战(2)——python数据结构及方法、控制流、字符串处理、自定义函数

    list1 = ['张三','男',33,'江苏','硕士','已婚',['身高178','体重72']]# 取出第一个元素print(list1[0])# 取出第四个元素print(list1[3] ...

  6. 吴裕雄 数据挖掘与分析案例实战(14)——Kmeans聚类分析

    # 导入第三方包import pandas as pdimport numpy as np import matplotlib.pyplot as pltfrom sklearn.cluster im ...

  7. 吴裕雄 数据挖掘与分析案例实战(13)——GBDT模型的应用

    # 导入第三方包import pandas as pdimport matplotlib.pyplot as plt # 读入数据default = pd.read_excel(r'F:\\pytho ...

  8. 吴裕雄 数据挖掘与分析案例实战(8)——Logistic回归分类模型

    import numpy as npimport pandas as pdimport matplotlib.pyplot as plt # 自定义绘制ks曲线的函数def plot_ks(y_tes ...

  9. 吴裕雄 数据挖掘与分析案例实战(7)——岭回归与LASSO回归模型

    # 导入第三方模块import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom sklearn import mod ...

随机推荐

  1. JZ2440 裸机驱动 第13章 LCD控制器(2)

    13.2 TFT LCD显示实例 13.2.1 程序设计     本实例的目的是从串口输出一个菜单,从中选择各种方法进行测试,比如画线. 画圆.显示单色.使用调色板等. 13.2.2代码详解     ...

  2. 【python】globle的使用

    python中直接定义的变量就是本地变量,使用global定义的变量就是全局变量.比如: a = 1 b = 1 def foo1(): global b #申明使用全局b a = 2 #a是本地变量 ...

  3. sql存储过程输出

    1.存储过程写法 create procedure [dbo].[Y_GetICBillNo] @IsSave smallint, @FBillType int, @BillID VARCHAR (5 ...

  4. css-inline-block和float的布局二者择其一?

    几个月前,带着不甘和忐忑毅然决然的在亚马逊离职了,当时不知道对我来说是好是坏,现在看来,当初的选择还是蛮不错的.感觉在亚马逊的几个月貌似接触最多的就是wiki和tt了,怀着对技术热忱离开,拒绝了腾讯, ...

  5. windows任务计划程序 坑

  6. [html] 回到页首

    [转]本文来自:最简单最强大的插件框架(Net 2.0+) http://www.cnblogs.com/baihmpgy/p/3305215.html <!doctype html> & ...

  7. Linux期中架构 全网备份案例

    server端脚本 #!/bin/bash #1 进行数据完整性验证 并生成结果 find /backup -type f -name "finger.txt"| xargs md ...

  8. matplot 代码实例2

    要画出如上图(注意原点有边距),怎么办呢? 简单而优雅,请看代码: #!/usr/bin/env python # coding=utf-8 import matplotlib.pyplot as p ...

  9. Unreal Engine 4(虚幻UE4)GameplayAbilities 插件入门教程(二)

    我们接着学习.如果没有学习第一篇,请前往学习. 由于GameplayAbilities插件基本上没有资料(除了前面提供的那篇Dave的博文以外,再无资料,有迹象表明Dave是这个插件的开发者). 这个 ...

  10. VMware中,该如何理解桥接网络与NAT 网络模式

    原创 2016年11月16日 23:26:34,原文地址如下: http://blog.csdn.net/u010801439/article/details/53193113 首先,我在VMware ...