CodeForces - 325E:The Red Button (哈密尔顿 转 欧拉回路)
Piegirl found the red button. You have one last chance to change the inevitable end.
The circuit under the button consists of n nodes, numbered from 0 to n - 1. In order to deactivate the button, the n nodes must be disarmed in a particular order. Node 0 must be disarmed first. After disarming node i, the next node to be disarmed must be either node (2·i) modulo n or node (2·i) + 1 modulo n. The last node to be disarmed must be node 0. Node 0 must be disarmed twice, but all other nodes must be disarmed exactly once.
Your task is to find any such order and print it. If there is no such order, print -1.
Input consists of a single integer n (2 ≤ n ≤ 105).
Output
Print an order in which you can to disarm all nodes. If it is impossible, print -1 instead. If there are multiple orders, print any one of them.
Examples
2
0 1 0
3
-1
4
0 1 3 2 0
16
0 1 2 4 9 3 6 13 10 5 11 7 15 14 12 8 0
题意:给定点[0,N-1],点i到i*2%N,i*2+1%N连边,问是否存在从0出发的哈密尔顿回路。
思路:N为奇数,无解,因为(N-1)/2要么到N,要么到0,不能满足N和0同时被遍历。
所以考虑N是偶数,发现i和(i+N/2)%N连出去的边相同。 那么发现给个点的入度出度都为2,由于互斥关系,那么入度出度都是1,就是求欧拉回路了; 一定有解,dfs倒序输出,即可。
#include<bits/stdc++.h>
using namespace std;
const int maxn=;
const int Mod=1e9+;
int vis[maxn],ans[maxn],tot,N;
void dfs(int u)
{
if(vis[u]) return ;
vis[u]=;
dfs(u*%N);
dfs((u*+)%N);
ans[++tot]=u;
}
int main()
{
scanf("%d",&N);
if(N&) return puts("-1"),;
dfs();
for(int i=tot;i>=;i--) printf("%d ",ans[i]);
puts("");
return ;
}
CodeForces - 325E:The Red Button (哈密尔顿 转 欧拉回路)的更多相关文章
- poj 2288 Islands and Bridges_状态压缩dp_哈密尔顿回路问题
题目链接 题目描述:哈密尔顿路问题.n个点,每一个点有权值,设哈密尔顿路为 C1C2...Cn,Ci的权值为Vi,一条哈密尔顿路的值分为三部分计算: 1.每一个点的权值之和 2.对于图中的每一条CiC ...
- Codeforces 325E
Codeforces 325E 原题 题目描述:给出\(n\)个点, 编号为\(0 \text ~ n-1\),每个点连出两条边分别为\(2i\)和\(2i+1\)(\(mod n\)),现从\(0\ ...
- 旅行商问题(TSP)、最长路径问题与哈密尔顿回路之间的联系(归约)
一,旅行商问题与H回路的联系(H回路 定义为 哈密尔顿回路) 旅行商问题是希望售货员恰好访问每个城市一次,最终回到起始城市所用的费用最低,也即判断图中是否存在一个费用至多为K的回路.(K相当于图中顶点 ...
- poj 2280 Islands and Bridges 哈密尔顿路 状压dp
题目链接 题意 给定一个\(N\)个点的无向图,求一条哈密尔顿路径\(C_1C_2...C_n\),使其\(value\)最大. \(value\)的计算方式如下:\[\begin{aligned}v ...
- 哈密尔顿环x
欧拉回路是指不重复地走过所有路径的回路,而哈密尔顿环是指不重复地走过所有的点,并且最后还能回到起点的回路. 代码如下: #include<iostream> #include<cs ...
- Codeforce 263D Cycle in Graph 搜索 图论 哈密尔顿环
You've got a undirected graph G, consisting of n nodes. We will consider the nodes of the graph inde ...
- The Red Button
The Red Button 问题 问题描述 Piegirl终于发现了红色按钮,你现在还剩最后一个机会去改变这个结局.这个按钮下面的电路由n个从0到n-1编号节点组成.为了关闭这个按钮,这n个节点必须 ...
- poj 2288 Islands and Bridges——状压dp(哈密尔顿回路)
题目:http://poj.org/problem?id=2288 不知为什么记忆化搜索就是WA得不得了! #include<iostream> #include<cstdio> ...
- Codeforces Round #296 (Div. 1) C. Data Center Drama 欧拉回路
Codeforces Round #296 (Div. 1)C. Data Center Drama Time Limit: 2 Sec Memory Limit: 256 MBSubmit: xx ...
随机推荐
- 如何查看DNS?
查看dns服务ip: 命令: ipconfig/all 查看dns缓存: 命令:ipconfig/displaydns 强制更新缓存: 命令:ipconfig /flush ...
- HTML表单格式化
HTML表单格式化 一.说明 用table布局 二.效果 三.代码 <!DOCTYPE html> <html> <head> <title>Form. ...
- Freemarker生成HTML静态页面
这段时间的工作是做一个网址导航的项目,面向用户的就是一个首页,于是就想到了使用freemarker这个模板引擎来对首页静态化. 之前是用jsp实现,为了避免用户每次打开页面都查询一次数据库,所以使用了 ...
- DOM文档对象模型
- Type cvc-complex-type.2.4.a: Invalid content was found starting with element 'build'.错误的解决方法
项目突然间爆出了这样的问题: Description Resource Path Location Typecvc-complex-type.2.4.a: Invalid content was fo ...
- BUCTOJ_ACM2017C 回文串的热爱
#include "iostream" #include "algorithm" #include "cstdio" #include &q ...
- [Spring Boot] 使用多个Servlet
当使用Spring boot的嵌入式servlet容器时,可以通过Spring bean或扫描Servlet组件的方式注册Servlet.Filter和Servlet规范的所有监听器(例如HttpSe ...
- 最小生成树 - 克鲁斯卡尔 - 并查集 - 边稀疏 - O(E * logE)
#define _CRT_SECURE_NO_WARNINGS #include<cstdio> #include<cstring> #include<algorithm ...
- 使用路径arc-奥运五环
<!DOCTYPE html><html xmlns="http://www.w3.org/1999/xhtml"><head> < ...
- iOS UI-团购案例(通过xib文件自定义UITableViewCell)
一.Model #import <Foundation/Foundation.h> @interface Goods : NSObject @property (nonatomic, co ...