2019牛客多校四 E. triples II (容斥)
大意: 给定$n,a$, 求$n$个$3$的倍数, $or$和为$a$的方案数.
简单容斥题
可以求出$f_{x,y}$表示所有$3$的倍数中, 奇数位不超过$x$个$1$, 偶数位不超过$y$个$1$的个数.
假设$a$二进制奇数位$c_1$个$1$,偶数位$c_0$个$1$, 根据容斥就有
$ans=\sum\limits_{i=0}^{c_1}\sum\limits_{j=0}^{c_0}(-1)^{c_0+c_1-i-j}\binom{c_1}{i}\binom{c_0}{j}f_{i,j}^n$
#include <iostream>
#include <sstream>
#include <algorithm>
#include <cstdio>
#include <math.h>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <string.h>
#include <bitset>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
#define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int P = 998244353, INF = 0x3f3f3f3f;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
//head const int N = 63;
int C[N][N],f[N][N];
int main() {
REP(i,0,N-1) {
C[i][0] = 1;
REP(j,1,i) C[i][j]=(C[i-1][j]+C[i-1][j-1])%P;
}
REP(i,0,N-1) REP(j,0,N-1) REP(ii,0,i) REP(jj,0,j) if ((ii+2*jj)%3==0) {
f[i][j] = (f[i][j]+(ll)C[i][ii]*C[j][jj])%P;
}
int t;
scanf("%d", &t);
while (t--) {
ll n, a;
scanf("%lld%lld", &n, &a);
n %= P-1;
int c[2]{};
REP(i,0,N-1) if (a>>i&1) ++c[i&1];
int ans = 0;
REP(i,0,c[0]) REP(j,0,c[1]) {
int ret = (ll)C[c[0]][i]*C[c[1]][j]%P*qpow(f[i][j],n)%P;
if (c[0]+c[1]+i+j&1) ret = P-ret;
ans = (ans+ret)%P;
}
printf("%d\n", ans);
}
}
2019牛客多校四 E. triples II (容斥)的更多相关文章
- 2019牛客多校第二场 A Eddy Walker(概率推公式)
2019牛客多校第二场 A Eddy Walker(概率推公式) 传送门:https://ac.nowcoder.com/acm/contest/882/A 题意: 给你一个长度为n的环,标号从0~n ...
- 2019牛客多校第一场 I Points Division(动态规划+线段树)
2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...
- 2019牛客多校第八场 F题 Flowers 计算几何+线段树
2019牛客多校第八场 F题 Flowers 先枚举出三角形内部的点D. 下面所说的旋转没有指明逆时针还是顺时针则是指逆时针旋转. 固定内部点的答案的获取 anti(A)anti(A)anti(A)或 ...
- 2019牛客多校 Round4
Solved:3 Rank:331 B xor 题意:5e4个集合 每个集合最多32个数 5e4个询问 询问l到r个集合是不是都有一个子集的xor和等于x 题解:在牛客多校第一场学了线性基 然后这个题 ...
- 2019牛客多校第四场 I题 后缀自动机_后缀数组_求两个串de公共子串的种类数
目录 求若干个串的公共子串个数相关变形题 对一个串建后缀自动机,另一个串在上面跑同时计数 广义后缀自动机 后缀数组 其他:POJ 3415 求两个串长度至少为k的公共子串数量 @(牛客多校第四场 I题 ...
- 2019牛客多校第四场 A meeting
链接:https://ac.nowcoder.com/acm/contest/884/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K,其他语言10485 ...
- 2019牛客多校第一场E ABBA(DP)题解
链接:https://ac.nowcoder.com/acm/contest/881/E 来源:牛客网 ABBA 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语 ...
- 2019牛客多校训练第四场K.number(思维)
题目传送门 题意: 输入一个只包含数字的字符串,求出是300的倍数的子串的个数(不同位置的0.00.000等都算,并考虑前导零的情况). sample input: 600 1230003210132 ...
- 2019牛客多校第四场B xor——线段树&&线性基的交
题意 给你 $n$ 个集合,每个集合中包含一些整数.我们说一个集合表示一个整数当且仅当存在一个子集其异或和等于这个整数.现在你需要回答 $m$ 次询问 ($l, r, x$),是否 $l$ 到 $r$ ...
随机推荐
- 通俗易懂的Redis数据结构基础教程
Redis有5个基本数据结构,string.list.hash.set和zset.它们是日常开发中使用频率非常高应用最为广泛的数据结构,把这5个数据结构都吃透了,你就掌握了Redis应用知识的一半了. ...
- SpringBoot面试题 转(已迁移到java相关知识点)
## 什么是springboot 用来简化spring应用的初始搭建以及开发过程 使用特定的方式来进行配置(properties或yml文件) 创建独立的spring引用程序 main方法运行 嵌入的 ...
- vue 页面间传值
使用params传参 ,不能使用path 只能使用name 使用params传参,刷新参数会消失 router/index.js import Vue from 'vue' import Router ...
- Alpha项目冲刺! Day6-产出
各个成员今日完成的任务 林恩:任务分工,博客撰写,了解安卓环境搭建 杨长元:安卓本地数据库 李震:了解聊天类app相关内容 胡彤:完善服务端 寇永明:研究测试代码 王浩:研究测试代码 李杰:研究测试代 ...
- P5658 括号树
P5658 括号树 题解 太菜了啥都不会写只能水5分数据 啥都不会写只能翻题解 题解大大我错了 我们手动找一下规律 我们设 w[ i ] 为从根节点到结点 i 对答案的贡献,也就是走到结点 i ,合 ...
- SQL-W3School-函数:SQL AVG() 函数
ylbtech-SQL-W3School-函数:SQL AVG() 函数 1.返回顶部 1. 定义和用法 AVG 函数返回数值列的平均值.NULL 值不包括在计算中. SQL AVG() 语法 SEL ...
- Android:导入所需的系统jar包到Android studio
1. 修改对于的AIDL文件,根据编译信息获知所需的jar包. mmm /frameworks/base/ show commands > log.txt 2>&1 out/tar ...
- 自定义控件之Region区域
构造Region 直接构造 public Region(Region region) //复制一个同样的Region变量 public Region(Rect r) public Region(int ...
- 阶段5 3.微服务项目【学成在线】_day18 用户授权_10-前端集成认证授权-需求分析
4 前端集成认证授权 4.1 需求分析 截至目前认证授权服务端的功能已基本完成,本章实现前端集成认证授权功能. 前端集成认证授权功能需要作如下工作: 1.前端页面校验用户的身份,如果用户没有登录则跳转 ...
- Python项目开发之CMDB理解与分析
CMDB的由来--ITIL ITIL就是IT基础架构库(Information Technology Infrastructure Library, ITIL,信息技术基础架构库),由英国政府部门CC ...