TTTTTTTTTTTT Gym 100818B Tree of Almost Clean Money 树连剖分+BIT 模板题
Problem B
Tree of Almost Clean Money
Input File: B.in
Output File: standard output
Time Limit: 4 seconds (C/C++)
Memory Limit: 256 megabytes
The tree of Almost Clean Money (or ACM Tree, for short) consists of N (1≤N≤500000) vertices in
which, well, (almost clean) money is growing (contrary to the old saying that money doesn’t grow
on trees). The vertices are numbered from 0 to N-1, with vertex 0 being the root of the tree. Every
vertex i except vertex 0 has a parent p(i) in the tree, such that p(i)<i. Initially, every vertex
contains v(i) (0≤v(i)<1000000007) monetary units. Due to its special properties, the tree has
attracted the attention of a large money laundering organization, who wants to use the tree for its
money “cleansing” business. This organization wants to execute Q (1≤Q≤50000) operations on
the tree. Each operation consists of two steps:
1) In step 1, K (1≤K≤1000) vertices from the tree are chosen: x(1), …, x(K) (0≤x(i)≤N-1) –
the same vertex may be selected multiple times here. In each of these vertices, an
amount of monetary units is added (thus increasing the amount of monetary units in
them). More exactly, y(i) (0≤y(i)<1000000007) monetary units are added to the selected
vertex x(i) (1≤i≤K).
2) In step 2, two vertices u and v (0≤u,v≤N-1) are chosen and the organization wants to
know the total amount of money found in the vertices located on the unique path in the
tree between the vertices u and v (with u and v inclusive).
The organization hired you to find the answer for step 2 of each of the Q operations and promised
you a hefty amount of money if you succeed.
Input
The first line of input contains the number of tree vertices N. The next N-1 lines contain two
space-separated integers, p(i) and i, each describing an edge of the tree. The next line contains
N space-separated values: the initial amount of monetary units in each vertex, v(0), …, v(N-1).
The next line contains the number of operations Q. Each of the next Q lines describes an
operation. Each operation is described by 9 space-separated integers, in this order: K, x(1), y(1),
A, B, C, D, u, v (0≤A,B,C,D<1000000007). The values x(2≤i≤K) and y(2≤i≤K) are generated as
follows:
x(i) = (A*x(i-1) + B) modulo N
y(i) = (C*y(i-1) + D) modulo 1000000007
Output
For each of the Q operations print a line containing the answer to step 2 of the operation. When
computing the answer for an operation, the effects of steps 1 from previous operations need to be
considered, too (i.e. after adding y(i) monetary units to a vertex x(i), these units remain added to
the vertex when executing subsequent operations, too).
acm
Sample input Sample output Explanation
4
0 1
0 3
1 2
1 2 3 4
3
1000 1 1 1 0 1 0 0 2
2 0 5 1 1 2 2 2 3
1 3 7 999 999 999 999 1 3
1006
1027
1031
In the first operation the value 1 is added
1000 times to vertex 1 (note A=C=1,
B=D=0). The path between 0 and 2
contains the vertices 0, 1 and 2. The total
amount of monetary units in them is 1006.
In operation 2: x(1)=0, y(1)=5, x(2)=1,
y(2)=12. The path between 2 and 3 contains
all the vertices of the tree.
In operation 3: K=1, so A, B, C, D are
irrelevant.
题意:给你一棵n个节点的树(n<=5e5),现在可以进行至多Q次操作(Q<=5e4),每次至多可以给k个节点(k<=1000)增加一个数值,然后每个操作都有一个询问(u,v),问从u到v的简单路径上的节点权值和。
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <cmath>
#include <vector>
#define MM(a,b) memset(a,b,sizeof(a));
using namespace std;
typedef long long ll;
#define CT continue
#define SC scanf
const int N=5*1e5+10;
const double pi=acos(-1); int n,siz[N],dep[N],son[N],treepos[N],
top[N],par[N],x[1005],y[1005];
ll tree[N];
vector<int> G[N]; void add_edge(int u,int v)
{
G[u].push_back(v);
G[v].push_back(u);
} int dfs_clock; void dfs1(int u,int father,int depth)
{
siz[u]=1;
dep[u]=depth;
son[u]=-1;
par[u]=father;
for(int i=0;i<G[u].size();i++){
int v=G[u][i];
if(v==father) CT;
dfs1(v,u,depth+1);
siz[u]+=siz[v];
if(son[u]==-1||siz[v]>siz[son[u]])
son[u]=v;
}
} void dfs2(int u,int tp)
{
top[u]=tp;
treepos[u]=++dfs_clock;
if(son[u]==-1) return;
dfs2(son[u],tp);
for(int i=0;i<G[u].size();i++) {
int v=G[u][i];
if(v==par[u]||v==son[u]) CT;
dfs2(v,v);
}
} int lowbit(int i)
{
return (i&(-i));
} void add(int pos,int val)
{
while(pos<=n) {
tree[pos]+=val;
pos+=lowbit(pos);
}
} ll tfind(int x)
{
ll res=0;
while(x>=1){
res+=tree[x];
x-=lowbit(x);
}
return res;
} ll query(int a,int b)
{
if(a>b) swap(a,b);
return tfind(b)-tfind(a-1);
} ll ans(int u,int v)
{
ll res=0,tu=top[u],tv=top[v];
while(tu!=tv) {
if(dep[tu]<dep[tv]){
swap(tu,tv);
swap(u,v);
}
int l=treepos[tu],r=treepos[u];
res+=query(l,r);
u=par[tu];
tu=top[u];
}
if(dep[u]<dep[v]) swap(u,v);
res+=query(treepos[v],treepos[u]);
return res;
} int main()
{
while(~SC("%d",&n))
{
for(int i=1;i<=n;i++) G[i].clear();
for(int i=1;i<n;i++) {
int u,v;
SC("%d%d",&u,&v);
add_edge(u+1,v+1);
} MM(tree,0);
dfs_clock=0; dfs1(1,0,1);
dfs2(1,1); for(int i=1;i<=n;i++) {
int x;SC("%d",&x);
add(treepos[i],x);
} int q;
SC("%d",&q);
while(q--){
int k,u,v;ll A,B,C,D;
SC("%d%d%d%lld%lld%lld%lld%d%d",&k,&x[1],&y[1],&A,&B,&C,&D,&u,&v);
add(treepos[x[1]+1],y[1]);
for(int i=2;i<=k;i++){
x[i]=(A*x[i-1]+B)%n;
y[i]=(C*y[i-1]+D)%1000000007;
add(treepos[x[i]+1],y[i]);
}
printf("%lld\n",ans(u+1,v+1));
} }
return 0;
}
分析:学了下树链剖分,树连剖分主要是用于对树进行路径求和统计以及去最大值最小值之类的,第一次dfs,找到重儿子,并给
节点深度表好号,记录下每个节点额父节点,,第二次dfs,构建树链,同时建好BIT或线段树,,最后然后路径求和的时候,先要统计链顶节点深度大的。
TTTTTTTTTTTT Gym 100818B Tree of Almost Clean Money 树连剖分+BIT 模板题的更多相关文章
- [HDU 5293]Tree chain problem(树形dp+树链剖分)
[HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- D. Happy Tree Party CodeForces 593D【树链剖分,树边权转点权】
Codeforces Round #329 (Div. 2) D. Happy Tree Party time limit per test 3 seconds memory limit per te ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST
E. Minimum spanning tree for each edge Connected undirected weighted graph without self-loops and ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge (最小生成树+树链剖分)
题目链接:http://codeforces.com/contest/609/problem/E 给你n个点,m条边. 问枚举每条边,问你加这条边的前提下组成生成树的权值最小的树的权值和是多少. 先求 ...
- 【 Gym - 101138J 】Valentina and the Gift Tree(树链剖分)
BUPT2017 wintertraining(15) 4 D Gym - 101138J 数据 题意 n个节点的一棵树,每个节点的权值为g,q个询问,树上的节点U-V,求U到V的路径的最大子段和. ...
- Query on a tree——树链剖分整理
树链剖分整理 树链剖分就是把树拆成一系列链,然后用数据结构对链进行维护. 通常的剖分方法是轻重链剖分,所谓轻重链就是对于节点u的所有子结点v,size[v]最大的v与u的边是重边,其它边是轻边,其中s ...
- 【BZOJ-4353】Play with tree 树链剖分
4353: Play with tree Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 31 Solved: 19[Submit][Status][ ...
- poj 3321:Apple Tree(树状数组,提高题)
Apple Tree Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 18623 Accepted: 5629 Descr ...
随机推荐
- 关于JS原型以及原型链、instanceof的一些理解
一.JS原型 首先要区分两个概念 1.构造函数 2.实例:由构造函数通过new方式创建出来的就是实例 <script> function Foo() { } var f = new Foo ...
- 适合新手的160个creakme(三)
先跑一下,这个程序应该是有定时器,多久之后自动开启,测试一下输入,序列号以字母方式输入会出现类型不匹配,之后程序自动退出 但是如果以数字方式输入序列号,则会出现,Try Again,所以这里序列号应该 ...
- Springboot使用外置tomcat的同时使用websocket通信遇到的坑
随意门:https://blog.csdn.net/qq_43323720/article/details/99660430 另外,使用了nginx的话,需要注意开放websocket支持 serve ...
- 代理模式与动态代理之JDK实现和CGlib实现
静态代理 静态代理中的代理类和委托类会实现同一接口或是派生自相同的父类. 由业务实现类.业务代理类 两部分组成.业务实现类 负责实现主要的业务方法,业务代理类负责对调用的业务方法作拦截.过滤.预处理, ...
- 牛客 197E 01串
大意: 给定01串, 单点修改, 询问给定区间$[l,r]$, 假设$[l,r]$从左往右得到的二进制数为$x$, 每次操作增加或减少2的幂, 求最少操作数使得$x$为0. 线段树维护2*2矩阵表示低 ...
- Spring MVC <context:annotation-config> 与 <context:component-scan>
在MVC的配置文件中,二者常出现,功能相似.简单做个比较 <context:annotation-config> 用于激活应用上下文中已经注册的bean的注解,无论你的bean是通过什么方 ...
- Spring实战(四)Spring高级装配中的bean profile
profile的原意为轮廓.剖面等,软件开发中可以译为“配置”. 在3.1版本中,Spring引入了bean profile的功能.要使用profile,首先要将所有不同的bean定义整理到一个或多个 ...
- 轻松搭建CAS 5.x系列(2)-搭建HTTPS的SSO SERVER端
概要说明 CAS要求,必须使用HTTPS的服务,否则就只等实现登录,无法实现单点登录.科普下HTTPS,网站有HTTP和HTTPS两种协议.HTTP是浏览器到网站之间是明文传输,比如你输入帐号名和密码 ...
- Task资料
5天玩转C#并行和多线程编程:http://www.cnblogs.com/yunfeifei/p/3993401.html
- c# redis密码验证笔记
参考博客https://www.cnblogs.com/qukaicheng/p/7514168.html写的 安装教程https://www.redis.net.cn/tutorial/3503.h ...