Caffe Model Zoo

许多的研究者和工程师已经创建了Caffe模型,用于不同的任务,使用各种种类的框架和数据。这些模型被学习和应用到许多问题上,从简单的回归到大规模的视觉分类,到Siamese networks for image similarity,到语音和机器人技术应用。

为了帮助分享这些模型,我们介绍model zoo 构架(framework):

  • 打包Caffe模型信息的标准格式。
  • 从Github Gists上传和下载模型,下载训练好的Caffe模型的二进制包的工具。
  • A central wiki page for sharing model info Gists.

从哪得到训练好的模型?

First of all, we bundle BVLC-trained models for unrestricted, out of the box use.

See the BVLC model license for details.Each one of these can be downloaded by runningscripts/download_model_binary.py
<dirname>
 where <dirname> is specified below:

  • BVLC Reference CaffeNet in models/bvlc_reference_caffenet: AlexNet trained on ILSVRC 2012, with a minor variation from the version as described in ImageNet
    classification with deep convolutional neural networks
     by Krizhevsky et al. in NIPS 2012. (Trained by Jeff Donahue @jeffdonahue)
  • BVLC AlexNet in models/bvlc_alexnet: AlexNet trained on ILSVRC 2012, almost exactly as described inImageNet
    classification with deep convolutional neural networks
     by Krizhevsky et al. in NIPS 2012. (Trained by Evan Shelhamer @shelhamer)
  • BVLC Reference R-CNN ILSVRC-2013 in models/bvlc_reference_rcnn_ilsvrc13: pure Caffe implementation of R-CNN as
    described by Girshick et al. in CVPR 2014. (Trained by Ross Girshick @rbgirshick)
  • BVLC GoogLeNet in models/bvlc_googlenet: GoogLeNet trained on ILSVRC 2012, almost exactly as described in Going
    Deeper with Convolutions
     by Szegedy et al. in ILSVRC 2014. (Trained by Sergio Guadarrama @sguada)

Community models made by Caffe users are posted to a publicly editable wiki page.These models
are subject to conditions of their respective authors such as citation and license.Thank you for sharing your models!

Model info format

A caffe model is distributed as a directory containing:

  • Solver/model prototxt(s)
  • readme.md containing
    • YAML frontmatter

      • Caffe version used to train this model (tagged release or commit hash).
      • [optional] file URL and SHA1 of the trained .caffemodel.
      • [optional] github gist id.
    • Information about what data the model was trained on, modeling choices, etc.
    • License information.
  • [optional] Other helpful scripts.

Hosting model info

Github Gist is a good format for model info distribution because it can contain multiple files, is versionable, and has in-browser syntax highlighting and markdown rendering.

scripts/upload_model_to_gist.sh <dirname> uploads non-binary files in the model directory as a Github Gist and prints the Gist ID. If gist_id is already part of the <dirname>/readme.md frontmatter, then updates existing
Gist.

Try doing scripts/upload_model_to_gist.sh models/bvlc_alexnet to test the uploading (don’t forget to delete the uploaded gist afterward).

Downloading model info is done just as easily with scripts/download_model_from_gist.sh <gist_id> <dirname>.

Hosting trained models

It is up to the user where to host the .caffemodel file.We host our BVLC-provided models on our own server.Dropbox also works fine (tip: make sure that ?dl=1 is appended to the end of the URL).

scripts/download_model_binary.py <dirname> downloads the .caffemodel from the URL specified in the<dirname>/readme.md frontmatter and confirms SHA1.

BVLC model license

The Caffe models bundled by the BVLC are released for unrestricted use.

These models are trained on data from the ImageNet project and training data includes internet photos that may be subject to copyright.

Our present understanding as researchers is that there is no restriction placed on the open release of these learned model weights, since none of the original images are distributed in whole or in part.To the extent that the interpretation arises that weights
are derivative works of the original copyright holder and they assert such a copyright, UC Berkeley makes no representations as to what use is allowed other than to consider our present release in the spirit of fair use in the academic mission of the university
to disseminate knowledge and tools as broadly as possible without restriction.

【神经网络与深度学习】Caffe Model Zoo许多训练好的caffemodel的更多相关文章

  1. 【神经网络与深度学习】如何将别人训练好的model用到自己的数据上

    caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...

  2. 【计算机视觉】【神经网络与深度学习】YOLO v2 detection训练自己的数据2

    1. 前言 关于用yolo训练自己VOC格式数据的博文真的不少,但是当我按照他们的方法一步一步走下去的时候发现出了其他作者没有提及的问题.这里就我自己的经验讲讲如何训练自己的数据集. 2.数据集 这里 ...

  3. 【神经网络与深度学习】【CUDA开发】【VS开发】Caffe+VS2013+CUDA7.5+cuDNN配置过程说明

    [神经网络与深度学习][CUDA开发][VS开发]Caffe+VS2013+CUDA7.5+cuDNN配置过程说明 标签:[Qt开发] 说明:这个工具在Windows上的配置真的是让我纠结万分,大部分 ...

  4. 人工智能深度学习Caffe框架介绍,优秀的深度学习架构

    人工智能深度学习Caffe框架介绍,优秀的深度学习架构 在深度学习领域,Caffe框架是人们无法绕过的一座山.这不仅是因为它无论在结构.性能上,还是在代码质量上,都称得上一款十分出色的开源框架.更重要 ...

  5. 【吴恩达课后测验】Course 1 - 神经网络和深度学习 - 第一周测验【中英】

    [吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第一周测验[中英] 第一周测验 - 深度学习简介 和“AI是新电力”相类似的说法是什么? [  ]AI为我们的家庭和办公室的个人设备供电 ...

  6. 【机器学习PAI实践十】深度学习Caffe框架实现图像分类的模型训练

    背景 我们在之前的文章中介绍过如何通过PAI内置的TensorFlow框架实验基于Cifar10的图像分类,文章链接:https://yq.aliyun.com/articles/72841.使用Te ...

  7. 【神经网络与深度学习】chainer边运行边定义的方法使构建深度学习网络变的灵活简单

    Chainer是一个专门为高效研究和开发深度学习算法而设计的开源框架. 这篇博文会通过一些例子简要地介绍一下Chainer,同时把它与其他一些框架做比较,比如Caffe.Theano.Torch和Te ...

  8. 【神经网络与深度学习】【CUDA开发】caffe-windows win32下的编译尝试

    [神经网络与深度学习][CUDA开发]caffe-windows win32下的编译尝试 标签:[神经网络与深度学习] [CUDA开发] 主要是在开发Qt的应用程序时,需要的是有一个使用的库文件也只是 ...

  9. 【神经网络与深度学习】【Qt开发】【VS开发】从caffe-windows-visual studio2013到Qt5.7使用caffemodel进行分类的移植过程

    [神经网络与深度学习][CUDA开发][VS开发]Caffe+VS2013+CUDA7.5+cuDNN配置成功后的第一次训练过程记录<二> 标签:[神经网络与深度学习] [CUDA开发] ...

随机推荐

  1. HDU 6053 - TrickGCD | 2017 Multi-University Training Contest 2

    /* HDU 6053 - TrickGCD [ 莫比乌斯函数,筛法分块 ] | 2017 Multi-University Training Contest 2 题意: 给出数列 A[N],问满足: ...

  2. mysql优化(下)

    优化SQL语句:(1)不要使用   select  *(2)尽量在where字段上添加索引:(3)模糊查询中%前置不能使用索引,比如  like ‘%a’;(4)使用or语句时,两侧语句都有索引时才使 ...

  3. jsp大文件传输断点续传源码

    这里只写后端的代码,基本的思想就是,前端将文件分片,然后每次访问上传接口的时候,向后端传入参数:当前为第几块文件,和分片总数 下面直接贴代码吧,一些难懂的我大部分都加上注释了: 上传文件实体类: 看得 ...

  4. require.context

    带表达式的 require 语句 如果你的 require参数含有表达式(expressions),会创建一个上下文(context),因为在编译时(compile time)并不清楚具体是哪一个模块 ...

  5. apache httpd.conf 文件的 详解

    文章 摘自 :http://www.php100.com/html/webkaifa/apache/2009/0418/1192.html   ServerRoot /usr/local Server ...

  6. python递归获取目录下指定文件

    获取一个目录下所有指定格式的文件是实际生产中常见需求. import os #递归获取一个目录下所有的指定格式的文件 def get_jsonfile(path,file_list): dir_lis ...

  7. Ubuntu的root用户通过SSH登录的解决方法

    通过ISO镜像安装完ubuntu 系统后,我们不能直接使用putty或其他远程工具通过SSH方式连接到linux系统 原因: linux 系统上没有安装远程工具openssh-server 解决方法: ...

  8. tp5 多条件查询

    $where['rc_category_id'] = array('eq',$cid); $where['rc_territory_ids'] = ['like', '%'.$tid.'%']; $l ...

  9. PHP JQurey

    JQuery是用JS编写的程序,使用起来比JS更为简单,使用前需引入一个JQurey文件,下面为JQurey语法 <script type="text/javascript" ...

  10. 提问(prompt)

    prompt弹出消息对话框,通常用于询问一些需要与用户交互的信息.弹出消息对话框(包含一个确定按钮.取消按钮与一个文本输入框). 语法: prompt(str1, str2); 参数说明: str1: ...