周志华-机器学习西瓜书-第三章习题3.5 LDA
本文为周志华机器学习西瓜书第三章课后习题3.5答案,编程实现线性判别分析LDA,数据集为书本第89页的数据
首先介绍LDA算法流程:

LDA的一个手工计算数学实例:





课后习题的代码:
# coding=utf-8
# import flatten
import tensorflow as tf
from numpy import *
import numpy as np
import matplotlib.pyplot as plt
def LDA(c1,c2):
m1=mean(c1,axis=0)
m2=mean(c2,axis=0)
c=vstack((c1,c2))
m=mean(c,axis=0)
n1=c1.shape[0]
n2=c2.shape[0]
s1=0
s2=0
for i in range(n1):
s1+=(c1[i,:]-m1).T*(c1[i,:]-m1)
for i in range(n2):
s2+= (c2[i, :] - m2).T * (c2[i, :] - m2)
sw=(n1*s1+n2*s2)/(n1+n2)
sb=((n1*(m-m1).T*(m-m1))+(n2*(m-m2)).T*(m-m2))/(n1+n2)
a,b=np.linalg.eig(mat(sw).I*sb)
index=np.argsort(-a)
maxIndex=index[:1]
w=b[:,maxIndex]
return w
data = array([[0.697,0.460,1],
[0.774,0.376,1],
[0.634,0.264,1],
[0.608,0.318,1],
[0.556,0.215,1],
[0.403,0.237,1],
[0.481,0.149,1],
[0.437,0.211,1],
[0.666,0.091,0],
[0.243,0.267,0],
[0.245,0.057,0],
[0.343,0.099,0],
[0.639,0.161,0],
[0.657,0.198,0],
[0.360,0.370,0],
[0.593,0.042,0],
[0.719,0.103,0]])
x_train1=data[0:8,0:2]
a1=x_train1[:,0]
b1=x_train1[:,1]
print(a1)
x_train2=data[8:,0:2]
a2=x_train2[:,0]
b2=x_train2[:,1]
#样本投影前
plt.scatter(a1,b1,label=' + ', color='g', s=25, marker='o')
plt.scatter(a2,b2,label=' - ', color='r', s=25, marker='o')
W=LDA(x_train1,x_train2)
print("w=",W)
k=W[1,0]/W[0,0]
plt.plot([0,1.5],[0,1.5*k])
# print(k)
# new1=(a1*W[0,0])
# new2=(b1*W[0,0])
# new3=(a2*W[1,0])
# new4=(b2*W[1,0])
new1=a1
new2=k*new1
plt.plot(new1,new2,'*r')
new3=a2
new4=k*new3
plt.plot(new3,new4,'*g')
plt.legend()#设置图例
plt.show()

运行结果:

周志华-机器学习西瓜书-第三章习题3.5 LDA的更多相关文章
- python实现简单决策树(信息增益)——基于周志华的西瓜书数据
数据集如下: 色泽 根蒂 敲声 纹理 脐部 触感 好瓜 青绿 蜷缩 浊响 清晰 凹陷 硬滑 是 乌黑 蜷缩 沉闷 清晰 凹陷 硬滑 是 乌黑 蜷缩 浊响 清晰 凹陷 硬滑 是 青绿 蜷缩 沉闷 清晰 ...
- 支持向量机(SVM)算法分析——周志华的西瓜书学习
1.线性可分 对于一个数据集: 如果存在一个超平面X能够将D中的正负样本精确地划分到S的两侧,超平面如下: 那么数据集D就是线性可分的,否则,不可分. w称为法向量,决定了超平面的方向:b为位移量,决 ...
- 机器学习周志华 pdf统计学习人工智能资料下载
周志华-机器学习 pdf,下载地址: https://u12230716.pipipan.com/fs/12230716-239561959 统计学习方法-李航, 下载地址: https://u12 ...
- (二)《机器学习》(周志华)第4章 决策树 笔记 理论及实现——“西瓜树”——CART决策树
CART决策树 (一)<机器学习>(周志华)第4章 决策树 笔记 理论及实现——“西瓜树” 参照上一篇ID3算法实现的决策树(点击上面链接直达),进一步实现CART决策树. 其实只需要改动 ...
- 【Todo】【读书笔记】机器学习-周志华
书籍位置: /Users/baidu/Documents/Data/Interview/机器学习-数据挖掘/<机器学习_周志华.pdf> 一共442页.能不能这个周末先囫囵吞枣看完呢.哈哈 ...
- 《AlphaGo世纪对决》与周志华《机器学习》观后感
这两天看了<AlphaGo世纪对决>纪录片与南大周志华老师的<机器学习>,想谈谈对人工智能的感想. 首先概述一下视频的内容吧,AlphaGo与李世石对战的过程大家都有基本的了解 ...
- 【深度森林第三弹】周志华等提出梯度提升决策树再胜DNN
[深度森林第三弹]周志华等提出梯度提升决策树再胜DNN 技术小能手 2018-06-04 14:39:46 浏览848 分布式 性能 神经网络 还记得周志华教授等人的“深度森林”论文吗?今天, ...
- 周志华《机器学习》高清电子书pdf分享
周志华<机器学习>高清电子书pdf下载地址 下载地址1:https://545c.com/file/20525574-415455837 下载地址2: https://pan.baidu. ...
- 偶尔转帖:AI会议的总结(by南大周志华)
偶尔转帖:AI会议的总结(by南大周志华) 说明: 纯属个人看法, 仅供参考. tier-1的列得较全, tier-2的不太全, tier-3的很不全. 同分的按字母序排列. 不很严谨地说, tier ...
随机推荐
- nginx搭建反向代理服务器详解
一.反向代理:Web服务器的“经纪人” 1.1 反向代理初印象 反向代理(Reverse Proxy)方式是指以代理服务器来接受internet上的连接请求,然后将请求转发给内部网络上的服务器,并将从 ...
- linux 基础7-正则表达式
1. 基础正规表示法 1.1 以grep获取字符串: 在万用字符*是0-无限个字符,?是一个字符:在正则表达式中是0-无限个字符前一个相同字符..一个前一个相同字符 grep '^[a-z]' gre ...
- Struts2 Action类的创建以及参数传递以及接收
一.Struts中Action得创建方式 1,直接创建一个简单的Action类 添加Struts.xml,配置转发方法返回转发的页面. 2,实现一个Action类 Strust.xml配置对应的Url ...
- notify()和 notifyAll()有什么区别?(未完成)
notify()和 notifyAll()有什么区别?(未完成)
- 学习Hook的必备知识
1.汇编 2.API 3.内存 4.进程 5.窗口 必须熟悉的汇编指令: PUSH 入栈 MOV 赋值 JMP(JNZ JE) 跳转 CALL 调用函数 RET 返回 Cmp 比较 T ...
- spring-AOP动态代理,以及aspectJ的xml配置或注解配置方法,各个拦截器的使用顺序
package com.itheima.aspect; public class MyAspect { public void check_Permissions(){ System.out.prin ...
- 函数对话框confirm()
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 014_linux驱动之_信号符号名、描述和它们的信号值
符号名 信号值 描述 是否符合POSIX SIGHUP 1 在控制终端上检测到挂断或控制线程死 亡 是 SIGINT 2 交互注意信号 是 SIGQUIT 3 交 互中止信号 是 SIGILL 4 检 ...
- sql 临时表的使用详解
Sqlserver数据库中的临时表详解 临时表在Sqlserver数据库中,是非常重要的,下面就详细介绍SQL数据库中临时表的特点及其使用,仅供参考. 临时表与永久表相似,但临时表存储在tem ...
- java新建excel文件导出(HSSFWorkbook)
public ActionForward exportExcel(ActionMapping mapping, ActionForm form, HttpServletRequest request, ...