1012 最大公约数和最小公倍数问题 2001年NOIP全国联赛普及组

时间限制: 1 s

空间限制: 128000 KB

题目等级 : 白银 Silver

题目描述 Description

输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数

条件: 1.P,Q是正整数

2.要求P,Q以x0为最大公约数,以y0为最小公倍数.

试求:满足条件的所有可能的两个正整数的个数.

输入描述 Input Description

二个正整数x0,y0

输出描述 Output Description

满足条件的所有可能的两个正整数的个数

样例输入 Sample Input

3 60

样例输出 Sample Output

4

数据范围及提示 Data Size & Hint

分类标签 Tags

数论 NOIP全国联赛普及组 大陆地区 2001年

/*
x*y=LCM(x,y)*GCD(x,y).
so枚举在√xy中的因子然后再看gcd(x,y)==a即可.
复杂度为O(√xy).
然后这题其实有更快做法.
式子两边同时除以gcd(x,y)
得到x/gcd(x,y)*y/gcd(x,y)=lcm/gcd(x,y).
然后这时x/gcd(x,y)与y/gcd(x,y)互质.
可以达到缩小范围的目的.
*/
#include<iostream>
#include<cstdio>
#define LL long long
using namespace std;
LL a,b,ans,tot;
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
int gcd(LL x,LL y)
{
if(!y) return x;
else return gcd(y,x%y);
}
void slove()
{
LL i;
for(i=1;i*i<=tot;i++)
{
if(tot%i==0)
{
LL j=tot/i;
if(gcd(j,i)==a) ans++;
} }
if(i*i==tot&&gcd(i,i)==a) ans--;
cout<<ans*2;
}
int main()
{
cin>>a>>b;
tot=a*b;
slove();
return 0;
}

1012 最大公约数和最小公倍数问题 2001年NOIP全国联赛普及组的更多相关文章

  1. 【数论】【最大公约数】【枚举约数】CODEVS 1012 最大公约数和最小公倍数问题 2001年NOIP全国联赛普及组

    对于一对数(p,q),若它们的gcd为x0,lcm为y0, 则:p*q/x0=y0,即q=x0*y0/p, 由于p.q是正整数,所以p.q都必须是x0*y0的约数. 所以O(sqrt(x0*y0))地 ...

  2. 最大公约数和最小公倍数问题 2001年NOIP全国联赛普及组

    题目描述 Description 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件:  1.P,Q是正整 ...

  3. wikioi1012 最大公约数和最小公倍数问题(2001年NOIP全国联赛普及组)

    题目描述 Description 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件:  1.P,Q是正整 ...

  4. codevs1011 数的计算 2001年NOIP全国联赛普及组

    题目描述 Description 我们要求找出具有下列性质数的个数(包含输入的自然数n): 先输入一个自然数n(n<=1000),然后对此自然数按照如下方法进行处理: 1.          不 ...

  5. codevs 1014 装箱问题 2001年NOIP全国联赛普及组

    题目描述 Description 有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每个物品有一个体积(正整数). 要求n个物品中,任取若 ...

  6. 【动态规划】【记忆化搜索】CODEVS 1011 数的计算 2001年NOIP全国联赛普及组

    设答案为f(n),我们显然可以暴力地递归求解: f(n)=f(1)+f(2)+……+f(n/2). 但是n=1000,显然会超时. 考虑状态最多可能会有n种,经过大量的重复计算,所以可以记忆下来,减少 ...

  7. 【动态规划】【零一背包】CODEVS 1014 装箱问题 2001年NOIP全国联赛普及组

    #include<cstdio> #include<algorithm> using namespace std; ],f[]; int main() { scanf(&quo ...

  8. codevs 1013 求先序排列 2001年NOIP全国联赛普及组 x

                         题目描述 Description 给出一棵二叉树的中序与后序排列.求出它的先序排列.(约定树结点用不同的大写字母表示,长度<=8). 输入描述 Inpu ...

  9. 1038 一元三次方程求解 2001年NOIP全国联赛提高组

    题目描述 Description 有形如:ax3+bx2+cx+d=0  这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d  均为实数),并约定该方程存在三个不同实根(根的范围在-100 ...

随机推荐

  1. Spring 注解介绍

    @Component与@Bean的区别 @Component注解表明一个类会作为组件类,并告知Spring要为这个类创建bean. @Bean注解告诉Spring这个方法将会返回一个对象,这个对象要注 ...

  2. txt\excel\cvs\xml存储测试数据

    一.目录结构 二.txt存储数据 1.txtData.txt如下: 请您输入手机/邮箱/用户名 请您输入密码 请您输入验证码 2.helper中读取txt数据的代码 def readTXT(self) ...

  3. T100弹出是否确认窗体方式

    例如: IF NOT cl_ask_confirm('aim-00108') THEN CALL s_transaction_end(') CALL cl_err_collect_show() RET ...

  4. 怎样使用 v-on 指令?

    1. Vue 中的 v-on 指令用于绑定 dom 事件 的监听函数. 下面代码实现的是 点击更改文字颜色 的功能. <!DOCTYPE html> <html lang=" ...

  5. ccpc湘潭邀请赛 Partial Sum

    选定最多m的区间,使区间和的绝对值最大.但是左右端点不能重复选取 首先涉及到区间和的问题,就应该想到用前缀和去优化 这里对前缀和排序 然后贪心的去选取最大.次大 (比赛的时候脑子堵的很,没想出来 可惜 ...

  6. mysql创建表空间和用户

    创建表空间名 create database 空间名 default character set utf8 collate utf8_bin; 创建用户create user 用户名 identifi ...

  7. Scala学习七——包和引入

    一.本章要点 包也可也可以像内部类那样嵌套 包路径不是绝对路径 包声明链x.y.z并不自动将中间包x和x.y变成可见 位于文件顶部不带花括号的包声明在整个文件范围内有效 包对象可以持有函数和变量 引入 ...

  8. 手把手教你搭建FastDFS集群(下)

    手把手教你搭建FastDFS集群(下) 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u0 ...

  9. 你不知道的css各类布局(五)之em布局、rem布局

    em布局/rem布局 em和rem的区别 在了解弹性布局前我们需要先知道em和rem rem:font size of the root element,rem是相对于根元素<html>来 ...

  10. 爬虫中什么是requests

    print(response.text) #响应的信息 print(response.headers) #获取响应头 print(response.status_code) #响应状态码 print( ...