1012 最大公约数和最小公倍数问题 2001年NOIP全国联赛普及组

时间限制: 1 s

空间限制: 128000 KB

题目等级 : 白银 Silver

题目描述 Description

输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数

条件: 1.P,Q是正整数

2.要求P,Q以x0为最大公约数,以y0为最小公倍数.

试求:满足条件的所有可能的两个正整数的个数.

输入描述 Input Description

二个正整数x0,y0

输出描述 Output Description

满足条件的所有可能的两个正整数的个数

样例输入 Sample Input

3 60

样例输出 Sample Output

4

数据范围及提示 Data Size & Hint

分类标签 Tags

数论 NOIP全国联赛普及组 大陆地区 2001年

/*
x*y=LCM(x,y)*GCD(x,y).
so枚举在√xy中的因子然后再看gcd(x,y)==a即可.
复杂度为O(√xy).
然后这题其实有更快做法.
式子两边同时除以gcd(x,y)
得到x/gcd(x,y)*y/gcd(x,y)=lcm/gcd(x,y).
然后这时x/gcd(x,y)与y/gcd(x,y)互质.
可以达到缩小范围的目的.
*/
#include<iostream>
#include<cstdio>
#define LL long long
using namespace std;
LL a,b,ans,tot;
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
int gcd(LL x,LL y)
{
if(!y) return x;
else return gcd(y,x%y);
}
void slove()
{
LL i;
for(i=1;i*i<=tot;i++)
{
if(tot%i==0)
{
LL j=tot/i;
if(gcd(j,i)==a) ans++;
} }
if(i*i==tot&&gcd(i,i)==a) ans--;
cout<<ans*2;
}
int main()
{
cin>>a>>b;
tot=a*b;
slove();
return 0;
}

1012 最大公约数和最小公倍数问题 2001年NOIP全国联赛普及组的更多相关文章

  1. 【数论】【最大公约数】【枚举约数】CODEVS 1012 最大公约数和最小公倍数问题 2001年NOIP全国联赛普及组

    对于一对数(p,q),若它们的gcd为x0,lcm为y0, 则:p*q/x0=y0,即q=x0*y0/p, 由于p.q是正整数,所以p.q都必须是x0*y0的约数. 所以O(sqrt(x0*y0))地 ...

  2. 最大公约数和最小公倍数问题 2001年NOIP全国联赛普及组

    题目描述 Description 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件:  1.P,Q是正整 ...

  3. wikioi1012 最大公约数和最小公倍数问题(2001年NOIP全国联赛普及组)

    题目描述 Description 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件:  1.P,Q是正整 ...

  4. codevs1011 数的计算 2001年NOIP全国联赛普及组

    题目描述 Description 我们要求找出具有下列性质数的个数(包含输入的自然数n): 先输入一个自然数n(n<=1000),然后对此自然数按照如下方法进行处理: 1.          不 ...

  5. codevs 1014 装箱问题 2001年NOIP全国联赛普及组

    题目描述 Description 有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每个物品有一个体积(正整数). 要求n个物品中,任取若 ...

  6. 【动态规划】【记忆化搜索】CODEVS 1011 数的计算 2001年NOIP全国联赛普及组

    设答案为f(n),我们显然可以暴力地递归求解: f(n)=f(1)+f(2)+……+f(n/2). 但是n=1000,显然会超时. 考虑状态最多可能会有n种,经过大量的重复计算,所以可以记忆下来,减少 ...

  7. 【动态规划】【零一背包】CODEVS 1014 装箱问题 2001年NOIP全国联赛普及组

    #include<cstdio> #include<algorithm> using namespace std; ],f[]; int main() { scanf(&quo ...

  8. codevs 1013 求先序排列 2001年NOIP全国联赛普及组 x

                         题目描述 Description 给出一棵二叉树的中序与后序排列.求出它的先序排列.(约定树结点用不同的大写字母表示,长度<=8). 输入描述 Inpu ...

  9. 1038 一元三次方程求解 2001年NOIP全国联赛提高组

    题目描述 Description 有形如:ax3+bx2+cx+d=0  这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d  均为实数),并约定该方程存在三个不同实根(根的范围在-100 ...

随机推荐

  1. hdu4706

    #include<string.h> #include<stdio.h> int main() { int a,b,c,d,i,j,n,m; ][]; ,j=; a<=; ...

  2. Asp.net core Enum as string + ef core value convertor

    更新 : 2019-06-08 build in convertor https://docs.microsoft.com/en-us/ef/core/modeling/value-conversio ...

  3. Java 面向对象的设计原则

    一. 1.面向对象思想的核心: 封装.继承.多态.   2.面向对象编程的追求: 高内聚低耦合的解决方案: 代码的模块化设计: 3.什么是设计模式: 针对反复出现的问题的经典解决方案,是对特定条件下( ...

  4. Java 反射理解(一)-- Class 类的使用

    Java 反射理解(一)-- Class 类的使用 概念 这里阐述几个基本概念: 在面向对象的世界里,万事万物皆对象.(在 Java 语言中,静态的成员.普通数据类型除外) 类也是对象,类是 java ...

  5. springboot 自动装配

    以下内容部分来自小马哥的 <springboot 编程思想> 基础 springboot 项目 maven 依赖 <dependency> <groupId>org ...

  6. vue项目默认IE以最高级别打开

    只需要在index.html加入 <meta http-equiv="X-UA-Compatible" content="IE=Edge">

  7. Spring AOP的理解和使用

    AOP是Spring框架面向切面的编程思想,AOP采用一种称为“横切”的技术,将涉及多业务流程的通用功能抽取并单独封装,形成独立的切面,在合适的时机将这些切面横向切入到业务流程指定的位置中. 掌握AO ...

  8. ETL 工具和 BI 工具

    ETL是数据仓库中的非常重要的一环,是承前启后的必要的一步.ETL负责将分布的.异构数据源中的数据如关系数据.平面数据文件等抽取到临时中间层后进行清洗.转换.集成,最后加载到数据仓库或数据集市中,成为 ...

  9. 【转】FireMonkey ListView 自动计算行高

    说明:展示 ListView 视其每一行 Item 的 Detail 字串长度自动调整高度(可每行高度不同). 适用:Delphi XE7 / XE8 源码下载:[原创]ListView_自动计算行高 ...

  10. SmartBinding与kbmMW#3

    前言 在SmartBinding #2中,我介绍了新的自动绑定功能,支持在Form设计器中直接定义绑定.不仅如此,kbmMW SmartBind还有更多很酷的功能,即将发布的kbmMW中的SmartB ...