题意

有高为 1, 2, …, n 的 n 根杆子排成一排, 从左向右能看到 L 根, 从右向左能看到 R 根。求有多少种可能的排列方式。

 

solution:

数据范围仅200,本来是往组合数学方面想的,看到了这个200就放弃了念头,果然是dp

定义dp[i][j][k]是用了高度为1~i的杆子,从左边能看到j个,从右边能看到k个

如果从1转移到n很困难,因为放一个高的杆子进去会造成很多的遮挡影响,是几乎不能维护的。于是考虑从n转移到1,即先放比较高的杆子

加上放好了2~n高度的杆子,再放高度为1的杆子仅有三种情况

1.放在最左边。仅仅是从左看能多看到一个 dp[i][j][k]+=dp[i-1][j-1][k]

2.放在最右边,同理

3.放在中间,一定会被挡住。i-1根杆子间有(i-2)个,则dp[i][j][k]+=dp[i-1][j][k]*(i-2)。

其实这里i的定义已经发生了一点变化,但是状态转移是很容易理解的

为什么可以把i等效定义为i个,而不是1~i呢?其实这只需要代表是i根高度不同的杆子,2~i的杆子全部砍1,相对高度没有变,也就等效成了1~i-1的杆子

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<queue>
#include<cstring>
#define mp make_pair
#define pb push_back
#define first fi
#define second se
#define pw(x) (1ll << (x))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define rep(i,l,r) for(int i=(l);i<(r);i++)
#define per(i,r,l) for(int i=(r);i>=(l);i--)
#define FOR(i,l,r) for(int i=(l);i<=(r);i++)
#define eps 1e-9
#define PIE acos(-1)
#define cl(a,b) memset(a,b,sizeof(a))
#define fastio ios::sync_with_stdio(false);cin.tie(0);
#define lson l , mid , ls
#define rson mid + 1 , r , rs
#define ls (rt<<1)
#define rs (ls|1)
#define INF 0x3f3f3f3f
#define LINF 0x3f3f3f3f3f3f3f3f
#define freopen freopen("in.txt","r",stdin);
#define cfin ifstream cin("in.txt");
#define lowbit(x) (x&(-x))
#define sqr(a) a*a
#define ll long long
#define ull unsigned long long
#define vi vector<int>
#define pii pair<int, int>
#define dd(x) cout << #x << " = " << (x) << ", "
#define de(x) cout << #x << " = " << (x) << "\n"
#define endl "\n"
using namespace std;
//**********************************
ll dp[][][];//dp[i][j][k]表示i个棒子从左边能看到j个右边能看到k个的方案数
//**********************************
void Init()
{
dp[][][]=;
FOR(i,,)FOR(j,,i)FOR(k,,i-j+)dp[i][j][k]=dp[i-][j-][k]+dp[i-][j][k-]+dp[i-][j][k]*(i-);
}
//**********************************
int main()
{
Init();
int T;cin>>T;
while(T--){
int a,b,c;cin>>a>>b>>c;
cout<<dp[a][b][c]<<endl;
}
return ;
}

计数原理,递推,求从左边能看到l个棒子,右边能看到r个棒子的方案数目的更多相关文章

  1. NYOJ-301递推求值

    递推求值 时间限制:1000 ms  |  内存限制:65535 KB 难度:4   描述 给你一个递推公式: f(x)=a*f(x-2)+b*f(x-1)+c 并给你f(1),f(2)的值,请求出f ...

  2. 算法笔记_091:蓝桥杯练习 递推求值(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 已知递推公式: F(n, 1)=F(n-1, 2) + 2F(n-3, 1) + 5, F(n, 2)=F(n-1, 1) + 3F(n- ...

  3. NYOJ——301递推求值(矩阵快速幂)

    递推求值 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 给你一个递推公式: f(x)=a*f(x-2)+b*f(x-1)+c 并给你f(1),f(2)的值,请求出f(n)的 ...

  4. poj 3744 Scout YYF I(递推求期望)

    poj 3744 Scout YYF I(递推求期望) 题链 题意:给出n个坑,一个人可能以p的概率一步一步地走,或者以1-p的概率跳过前面一步,问这个人安全通过的概率 解法: 递推式: 对于每个坑, ...

  5. Java实现 蓝桥杯 算法提高 递推求值

    算法提高 递推求值 时间限制:1.0s 内存限制:256.0MB 问题描述 已知递推公式: F(n, 1)=F(n-1, 2) + 2F(n-3, 1) + 5, F(n, 2)=F(n-1, 1) ...

  6. P2602 [ZJOI2010]数字计数(递推)

    P2602 [ZJOI2010]数字计数 思路: 首先考虑含有前导0的情况,可以发现在相同的\(i\)位数中,每个数的出现次数都是相等的.所以我们可以设\(f(i)\)为\(i\)位数每个数的出现次数 ...

  7. poj 2096 Collecting Bugs 【概率DP】【逆向递推求期望】

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 3523   Accepted: 1740 ...

  8. HDU 5446——Unknown Treasure——————【CRT+lucas+exgcd+快速乘+递推求逆元】

    Each test case starts with three integers n,m,k(1≤m≤n≤1018,1≤k≤10) on a line where k is the number o ...

  9. 【poj2478-Farey Sequence】递推求欧拉函数-欧拉函数的几个性质和推论

    http://poj.org/problem?id=2478 题意:给定一个数x,求<=x的数的欧拉函数值的和.(x<=10^6) 题解:数据范围比较大,像poj1248一样的做法是不可行 ...

随机推荐

  1. HTML类

    class Html: def __init__(self,name): self.name = name @staticmethod def full_name(): print('全称:Hype ...

  2. js重点——作用域——作用域分类(三)

    一.作用域可以分为全局作用域,局部作用域(函数作用域)和块级作用域. 1.全局作用域 代码在程序中的任何位置都能被访问到,window对象的内置属性都拥有全局作用域. <script> v ...

  3. 忘记root密码,修改方法

    Linux的root密码修改不像Windows的密码修改找回,Windows的登录密码忘记需要介入工具进行解决.CentOS6和CentOS7的密码方法也是不一样的,具体如下: 首先是CentOS 6 ...

  4. @ComponentScan注解及其XML配置

    开发中会经常使用包扫描,只要标注了@Controller.@Service.@Repository,@Component 注解的类会自动加入到容器中,ComponentScan有注解和xml配置两种方 ...

  5. ASE19团队项目alpha阶段model组 scrum6 记录

    本次会议于11月8日,19时整在微软北京西二号楼sky garden召开,持续15分钟. 与会人员:Kun Yan, Lei Chai, Linfeng Qi, Xueqing Wu, Yutong ...

  6. Java动态追踪技术探究(动态修改)

    Java动态追踪技术探究 Java探针-Java Agent技术-阿里面试题 秒懂Java动态编程(Javassist研究) 可以用于在类加载的时候,修改字节码. Java agent(Java探针) ...

  7. 使用JS和PHP导出table表格

    把table表格的内容导出成excel 或者word等格式(简单容易不需要太多php) 导出需注意 1. 样式都在行间,导出excel表格会继承样式包括colspan.rowspan,非表格元素,样式 ...

  8. Hadoop_28_MapReduce_自定义 inputFormat

    1. 自定义inputFormat 1.1.需求: 无论hdfs还是mapreduce,对于小文件都有损效率,实践中,又难免面临处理大量小文件,此时就需要有相应解决方案; 1.2.分析: 小文件的优化 ...

  9. Collection 和 Collections 有什么区别?(未完成)

    Collection 和 Collections 有什么区别?(未完成)

  10. 集合(一)-Java中Arrays.sort()自定义数组的升序和降序排序

    默认升序 package peng; import java.util.Arrays;  public class Testexample { public static void main(Stri ...