计数原理,递推,求从左边能看到l个棒子,右边能看到r个棒子的方案数目
题意
有高为 1, 2, …, n 的 n 根杆子排成一排, 从左向右能看到 L 根, 从右向左能看到 R 根。求有多少种可能的排列方式。
solution:
数据范围仅200,本来是往组合数学方面想的,看到了这个200就放弃了念头,果然是dp
定义dp[i][j][k]是用了高度为1~i的杆子,从左边能看到j个,从右边能看到k个
如果从1转移到n很困难,因为放一个高的杆子进去会造成很多的遮挡影响,是几乎不能维护的。于是考虑从n转移到1,即先放比较高的杆子
加上放好了2~n高度的杆子,再放高度为1的杆子仅有三种情况
1.放在最左边。仅仅是从左看能多看到一个 dp[i][j][k]+=dp[i-1][j-1][k]
2.放在最右边,同理
3.放在中间,一定会被挡住。i-1根杆子间有(i-2)个,则dp[i][j][k]+=dp[i-1][j][k]*(i-2)。
其实这里i的定义已经发生了一点变化,但是状态转移是很容易理解的
为什么可以把i等效定义为i个,而不是1~i呢?其实这只需要代表是i根高度不同的杆子,2~i的杆子全部砍1,相对高度没有变,也就等效成了1~i-1的杆子
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<queue>
#include<cstring>
#define mp make_pair
#define pb push_back
#define first fi
#define second se
#define pw(x) (1ll << (x))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define rep(i,l,r) for(int i=(l);i<(r);i++)
#define per(i,r,l) for(int i=(r);i>=(l);i--)
#define FOR(i,l,r) for(int i=(l);i<=(r);i++)
#define eps 1e-9
#define PIE acos(-1)
#define cl(a,b) memset(a,b,sizeof(a))
#define fastio ios::sync_with_stdio(false);cin.tie(0);
#define lson l , mid , ls
#define rson mid + 1 , r , rs
#define ls (rt<<1)
#define rs (ls|1)
#define INF 0x3f3f3f3f
#define LINF 0x3f3f3f3f3f3f3f3f
#define freopen freopen("in.txt","r",stdin);
#define cfin ifstream cin("in.txt");
#define lowbit(x) (x&(-x))
#define sqr(a) a*a
#define ll long long
#define ull unsigned long long
#define vi vector<int>
#define pii pair<int, int>
#define dd(x) cout << #x << " = " << (x) << ", "
#define de(x) cout << #x << " = " << (x) << "\n"
#define endl "\n"
using namespace std;
//**********************************
ll dp[][][];//dp[i][j][k]表示i个棒子从左边能看到j个右边能看到k个的方案数
//**********************************
void Init()
{
dp[][][]=;
FOR(i,,)FOR(j,,i)FOR(k,,i-j+)dp[i][j][k]=dp[i-][j-][k]+dp[i-][j][k-]+dp[i-][j][k]*(i-);
}
//**********************************
int main()
{
Init();
int T;cin>>T;
while(T--){
int a,b,c;cin>>a>>b>>c;
cout<<dp[a][b][c]<<endl;
}
return ;
}
计数原理,递推,求从左边能看到l个棒子,右边能看到r个棒子的方案数目的更多相关文章
- NYOJ-301递推求值
递推求值 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 给你一个递推公式: f(x)=a*f(x-2)+b*f(x-1)+c 并给你f(1),f(2)的值,请求出f ...
- 算法笔记_091:蓝桥杯练习 递推求值(Java)
目录 1 问题描述 2 解决方案 1 问题描述 问题描述 已知递推公式: F(n, 1)=F(n-1, 2) + 2F(n-3, 1) + 5, F(n, 2)=F(n-1, 1) + 3F(n- ...
- NYOJ——301递推求值(矩阵快速幂)
递推求值 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 给你一个递推公式: f(x)=a*f(x-2)+b*f(x-1)+c 并给你f(1),f(2)的值,请求出f(n)的 ...
- poj 3744 Scout YYF I(递推求期望)
poj 3744 Scout YYF I(递推求期望) 题链 题意:给出n个坑,一个人可能以p的概率一步一步地走,或者以1-p的概率跳过前面一步,问这个人安全通过的概率 解法: 递推式: 对于每个坑, ...
- Java实现 蓝桥杯 算法提高 递推求值
算法提高 递推求值 时间限制:1.0s 内存限制:256.0MB 问题描述 已知递推公式: F(n, 1)=F(n-1, 2) + 2F(n-3, 1) + 5, F(n, 2)=F(n-1, 1) ...
- P2602 [ZJOI2010]数字计数(递推)
P2602 [ZJOI2010]数字计数 思路: 首先考虑含有前导0的情况,可以发现在相同的\(i\)位数中,每个数的出现次数都是相等的.所以我们可以设\(f(i)\)为\(i\)位数每个数的出现次数 ...
- poj 2096 Collecting Bugs 【概率DP】【逆向递推求期望】
Collecting Bugs Time Limit: 10000MS Memory Limit: 64000K Total Submissions: 3523 Accepted: 1740 ...
- HDU 5446——Unknown Treasure——————【CRT+lucas+exgcd+快速乘+递推求逆元】
Each test case starts with three integers n,m,k(1≤m≤n≤1018,1≤k≤10) on a line where k is the number o ...
- 【poj2478-Farey Sequence】递推求欧拉函数-欧拉函数的几个性质和推论
http://poj.org/problem?id=2478 题意:给定一个数x,求<=x的数的欧拉函数值的和.(x<=10^6) 题解:数据范围比较大,像poj1248一样的做法是不可行 ...
随机推荐
- 关于spring中事务管理的几件小事
1.Spring中的事务管理 作为企业级应用程序框架,Spring在不同的事务管理API之上定义了一个抽象层.而应用程序开发人员不必了解底层的事务管理API,就可以使用Spring的事务管理机制. S ...
- 重拾MVC——第二天:Vue学习与即时密码格式验证
今天是复习MVC的第二天,准备自己写一个后台管理,然后慢慢写大,做全. 个人感觉做 Web 的,前端知识是必备的,所有今天学习了一下 Vue,很多人用这个,我以前没有用过,今天把它补起来. 比较了各个 ...
- Flutter 38: 图解 Flutter 基本动画 (二)
小菜前两天学习了以下 Animation 的基本动画,接下来小菜学习以下稍微进阶版的 Animation 动画. 复合动画 小菜前两天学习的主要是基本的单一动画,当然多个动画效果集一身也是毫无问题的, ...
- IDEA乱码总结和处理
工程乱码 打开File-Setting, 找到File Encodings这个选项,把encoding设置成你工程的编码即可,一般是UTF-8,如下图(红框的地方),然后重新rebuild一下,基本就 ...
- Django restfulframework 开发相关知识 整理
目录 目录 前言 前后端分离 实现前后端分离的方法 前后端分离带来的优点 RESTful十大规范 协议规范 域名规范 版本表示规范 url使用名词 http请求动词 过滤条件 状态码 错误信息 请求方 ...
- JS和jQuery用法区别
目录 JS和jQuery用法区别 外观区别 查找元素 操作标签 操作内容 操作属性 操作位置 操作样式 事件 JS和jQuery用法区别 外观区别 jQuery与JS最直观的区别就是外观上jQuery ...
- 【Day2】4.第三方模块的安装与使用
课程目标 1. 使用模块 2. 安装第三方模块 使用模块 • 一个.Py文件称之为一个模块(Module) • 好处: 1. 便于代码维护,把很多函数放到不同文件,一个.py文件 的 代码数量少 2. ...
- Codeforces 845G Shortest Path Problem?
http://codeforces.com/problemset/problem/845/G 从顶点1dfs全图,遇到环则增加一种备选方案,环上的环不需要走到前一个环上作为条件,因为走完第二个环可以从 ...
- vim编辑命令
vi命令 命令模式: yy:复制 光标所在的这一行 4yy:复制 光标所在行开始向下的4行 p: 粘贴 dd:剪切 光标所在的这一行 2dd:剪切 光标所在行 向下 2行 D:从当前的光标开始剪切,一 ...
- 使用pipenv管理你的python项目
怎么使用pipenv管理你的python项目 原文链接:https://robots.thoughtbot.com/how-to-manage-your-python-projects-with- ...