Contest Info

Practice Link

Solved A B C D E F G H I J K L M
8/13 O O - - O - - O O O Ø - O
  • O 在比赛中通过
  • Ø 赛后通过
  • ! 尝试了但是失败了
  • - 没有尝试

Solutions

Problem A. Accurate Movement

签到题。

代码:

view code
  1. #include <bits/stdc++.h>
  2. using namespace std;
  3. int ceil(int x, int y) {
  4. return (x + y - 1) / y;
  5. }
  6. int main() {
  7. int a, b, n;
  8. while (scanf("%d%d%d", &a, &b, &n) != EOF) {
  9. int res = ceil(n - b, b - a) + ceil(n - a, b - a);
  10. printf("%d\n", res);
  11. }
  12. return 0;
  13. }

Problem B. Bad Treap

题意:

令Treap的一对二维点权为\((f, sin(x))\),现在要给出\(n\)个\(x\),使得这个Treap的深度最大

思路:

考虑很小的时候,\(x = sin(x)\),那么它两维都是单调的,深度最大

代码:

view code
  1. #include <bits/stdc++.h>
  2. using namespace std;
  3. int main() {
  4. int n;
  5. scanf("%d", &n);
  6. for (long long i = 1; i <= n; ++i)
  7. printf("%lld\n", i * 710 - 710 * 25000);
  8. return 0;
  9. }

Problem E. Equidistant

题意:

给出一棵树,再给定\(m\)个点,现在要找一个点,使得这个点到\(m\)个点的距离相等

思路:

以\(m\)个点作为起点跑多源最短路,但是同时要记录到点\(x\)的最短路径条数,当最短路径条数为\(m\)的时候,那么这个点就是合法的

代码:

view code
  1. #include <bits/stdc++.h>
  2. using namespace std;
  3. const int N = 2e5 + 10;
  4. int n, m;
  5. int dep[N], sze[N], a[N], vis[N];
  6. vector<vector<int> >G;
  7. void gao() {
  8. queue<int> q;
  9. for (int i = 1; i <= m; ++i) q.push(a[i]);
  10. while (!q.empty()) {
  11. int u = q.front();
  12. q.pop();
  13. for (auto &v : G[u]) {
  14. if (dep[v] == 0 || dep[v] == dep[u] + 1) {
  15. dep[v] = dep[u] + 1;
  16. sze[v] += sze[u];
  17. if (sze[v] == m) {
  18. printf("YES\n%d\n", v);
  19. return ;
  20. }
  21. if (!vis[v]) {
  22. q.push(v);
  23. vis[v] = 1;
  24. }
  25. }
  26. }
  27. }
  28. puts("NO");
  29. }
  30. int main() {
  31. while (scanf("%d %d", &n, &m) != EOF) {
  32. G.clear();
  33. G.resize(n + 1);
  34. memset(dep, 0, sizeof dep);
  35. memset(sze, 0, sizeof sze);
  36. memset(vis, 0, sizeof vis);
  37. for (int i = 1, u, v; i < n; ++i) {
  38. scanf("%d %d", &u, &v);
  39. G[u].push_back(v);
  40. G[v].push_back(u);
  41. }
  42. for (int i = 1; i <= m; ++i) {
  43. scanf("%d", a + i);
  44. dep[a[i]] = 1;
  45. sze[a[i]] = 1;
  46. vis[a[i]] = 1;
  47. }
  48. if (n == 1) {
  49. puts("YES\n1");
  50. } else {
  51. gao();
  52. }
  53. }
  54. return 0;
  55. }

Problem H. High Load Database

题意:

给出\(n\)个数\(a_i(\sum a_i \leq 10^6)\),\(q\)次询问给出一个\(t_i\),问将这\(n\)个数分成若干个连续段,使得每段之和不超过\(t_i\)的最小段数

思路:

考虑单次询问显然可以贪心合并,但是我们可以维护一个前缀和,每次二分跳下一个位置,所以处理一个询问的时间是\(O(\text{段数}logn)\)。

并且考虑\(\sum a_i \leq 10^6\),所以所有可行询问的总段数不会很多,直接暴力即可。

代码:

view code
  1. #include <bits/stdc++.h>
  2. using namespace std;
  3. const int N = 1e6 + 10;
  4. int n, q, Max, a[N], sum[N], ans[N], vis[N];
  5. int getans(int limit) {
  6. if (vis[limit]) return ans[limit];
  7. vis[limit] = 1;
  8. if (Max > limit) {
  9. return ans[limit] = -1;
  10. }
  11. if (limit <= 1000) {
  12. int res = 1, pre = 0;
  13. for (int i = 1; i <= n; ++i) {
  14. if (a[i] + pre <= limit) {
  15. pre += a[i];
  16. } else {
  17. pre = a[i];
  18. ++res;
  19. }
  20. }
  21. return ans[limit] = res;
  22. } else {
  23. int res = 0, pos = 0;
  24. while (pos < n) {
  25. ++res;
  26. int nx = upper_bound(sum + 1, sum + 1 + n, limit + sum[pos]) - sum - 1;
  27. pos = nx;
  28. }
  29. return ans[limit] = res;
  30. }
  31. }
  32. int main() {
  33. while (scanf("%d", &n) != EOF) {
  34. memset(vis, 0, sizeof vis);
  35. sum[0] = 0;
  36. for (int i = 1; i <= n; ++i) {
  37. scanf("%d", a + i);
  38. Max = max(Max, a[i]);
  39. sum[i] = sum[i - 1] + a[i];
  40. }
  41. scanf("%d", &q);
  42. while (q--) {
  43. int need; scanf("%d", &need);
  44. int res = getans(need);
  45. if (res == -1) puts("Impossible");
  46. else printf("%d\n", res);
  47. }
  48. }
  49. return 0;
  50. }

Problem I. Ideal Pyramid

代码:

view code
  1. #include <bits/stdc++.h>
  2. using namespace std;
  3. const int N = 1e5 + 10;
  4. const int INF = 0x3f3f3f3f;
  5. struct node {
  6. int x, y, z;
  7. node() {}
  8. node(int x, int y, int z): x(x), y(y), z(z) {}
  9. }a[N];
  10. int n;
  11. int x, y;
  12. bool ok(int h) {
  13. int l = -INF, r = INF, u = INF, d = -INF;
  14. for (int i = 1; i <= n; ++i) {
  15. if (h < a[i].z) return false;
  16. int x = h - a[i].z;
  17. l = max(l, a[i].x - x);
  18. r = min(r, a[i].x + x);
  19. u = min(u, a[i].y + x);
  20. d = max(d, a[i].y - x);
  21. }
  22. if (l > r || d > u) return false;
  23. x = l, y = d;
  24. return true;
  25. }
  26. int main() {
  27. while (scanf("%d", &n) != EOF) {
  28. for (int i = 1; i <= n; ++i) {
  29. scanf("%d %d %d", &a[i].x, &a[i].y, &a[i].z);
  30. }
  31. int l = 0, r = INF, res = INF;
  32. x = INF, y = INF;
  33. while (r - l >= 0) {
  34. int mid = (l + r) >> 1;
  35. if (ok(mid)) {
  36. r = mid -1;
  37. res = mid;
  38. } else {
  39. l = mid + 1;
  40. }
  41. }
  42. ok(res);
  43. printf("%d %d %d\n", x, y, res);
  44. }
  45. return 0;
  46. }

Problem J. Just the Last Digit

题意:

有一个\(n\)个点的有向图,\(i\) 到 \(j\)有边,那么必然有\(i < j\)。

现在给出\(a_{i, j} = i \rightarrow j\)的路径条数模\(10\)的结果,要你还原这个图。

思路:

正着推,考虑新加入一个点\(k\)的时候,我们枚举一个点\(i(i < k)\),如果\(i\)到\(k\)通过点\(j(i < j < k)\)中转的路径之和模\(10\)不等于\(a_{i, j}\),那么\(i \rightarrow k\)这条边是存在的,否则不存在

代码:

view code
  1. #include <bits/stdc++.h>
  2. using namespace std;
  3. typedef long long ll;
  4. const int N = 510;
  5. int n;
  6. char a[N][N];
  7. int res[N][N];
  8. int main() {
  9. while (scanf("%d", &n) != EOF) {
  10. memset(res, 0, sizeof res);
  11. for (int i = 1; i <= n; ++i) {
  12. for (int j = 1; j <= n; ++j) {
  13. scanf(" %c", &a[i][j]);
  14. }
  15. }
  16. for (int i = 1; i <= n; ++i) {
  17. for (int j = i + 1; j <= n; ++j) {
  18. int sum = 0;
  19. for (int k = i + 1; k < j; ++k) {
  20. if (res[i][k]) sum += a[k][j] - '0';
  21. }
  22. if ((sum + 1) % 10 == a[i][j] - '0') res[i][j] = 1;
  23. }
  24. }
  25. for (int i = 1; i <= n; ++i) {
  26. for (int j = 1; j <= n; ++j) {
  27. printf("%d", res[i][j]);
  28. }
  29. puts("");
  30. }
  31. }
  32. return 0;
  33. }

Problem K. King’s Children

题意:

给出一个\(n \cdot m\)的矩形,上面的'.'表示空地,字母表示国王的儿子,'A'表示大儿子。

现在要给每个儿子划分城市,每个城市必须是一个矩形,每块空地只能属于一个城市,一个城市里面只能包含一个儿子。

但是大儿子划分得到的空地数量要尽可能的多,但不一定是最多。

思路:

对'A'找一个极大子矩形,挖空后将剩下的分完。

考虑两种分法:

  • 先竖向扩展,然后横向扩展
  • 先横向扩展,然后竖向扩展

这两种分法不可能同时不成立,不太知道为啥(猜的)。。

代码:

view code
  1. #include <bits/stdc++.h>
  2. using namespace std;
  3. #define dbg(x...) do { cout << "\033[32;1m" << #x << " -> "; err(x); } while(0)
  4. void err() { cout << "\033[39;0m" << endl; }
  5. template <class T, class... Ts> void err(const T&arg, const Ts&... args) { cout << arg << " "; err(args...); }
  6. const int N = 1e3 + 10;
  7. const int INF = 0x3f3f3f3f;
  8. int n, m, ax, ay;
  9. char str[N][N], stra[N][N], strb[N][N];
  10. int up[N][N], down[N][N];
  11. int X[N], Y[N];
  12. void gaoA(char str[][N], int l, int r) {
  13. int MinU = INF, MinD = INF;
  14. for (int i = l; i <= r; ++i) {
  15. MinU = min(MinU, up[ax][i]);
  16. MinD = min(MinD, down[ax][i]);
  17. }
  18. for (int i = l; i <= r; ++i) {
  19. for (int j = 1; j <= MinU; ++j) {
  20. str[ax - j + 1][i] = 'a';
  21. }
  22. for (int j = 1; j <= MinD; ++j) {
  23. str[ax + j - 1][i] = 'a';
  24. }
  25. }
  26. str[ax][ay] = 'A';
  27. }
  28. void gaoU(char str[][N]) {
  29. for (int i = 1; i <= n; ++i) {
  30. for (int j = 1; j <= m; ++j) {
  31. if (str[i][j] > 'A' && str[i][j] <= 'Z') {
  32. up[i][j] = i;
  33. for (int o = 1; ; ++o) {
  34. if (i - o < 1) break;
  35. if (str[i - o][j] != '.') break;
  36. up[i][j] = i - o;
  37. str[i - o][j] = str[i][j] - 'A' + 'a';
  38. }
  39. }
  40. }
  41. }
  42. }
  43. void gaoD(char str[][N]) {
  44. for (int i = 1; i <= n; ++i) {
  45. for (int j = m; j >= 1; --j) {
  46. if (str[i][j] > 'A' && str[i][j] <= 'Z') {
  47. down[i][j] = i;
  48. for (int o = 1; ; ++o) {
  49. if (i + o > n) break;
  50. if (str[i + o][j] != '.') break;
  51. down[i][j] = i + o;
  52. str[i + o][j] = str[i][j] - 'A' + 'a';
  53. }
  54. }
  55. }
  56. }
  57. }
  58. void gaoL(char str[][N]) {
  59. for (int j = 1; j <= m; ++j) {
  60. for (int i = 1; i <= n; ++i) {
  61. if (str[i][j] > 'A' && str[i][j] <= 'Z') {
  62. for (int o = j - 1; o >= 1; --o) {
  63. int F = 1;
  64. for (int k = up[i][j]; k <= down[i][j]; ++k) {
  65. if (str[k][o] != '.') {
  66. F = 0;
  67. break;
  68. }
  69. }
  70. if (!F) break;
  71. for (int k = up[i][j]; k <= down[i][j]; ++k) {
  72. str[k][o] = str[i][j] - 'A' + 'a';
  73. }
  74. }
  75. }
  76. }
  77. }
  78. }
  79. void gaoR(char str[][N]) {
  80. for (int j = m; j >= 1; --j) {
  81. for (int i = 1; i <= n; ++i) {
  82. if (str[i][j] > 'A' && str[i][j] <= 'Z') {
  83. for (int o = j + 1; o <= m; ++o) {
  84. int F = 1;
  85. for (int k = up[i][j]; k <= down[i][j]; ++k) {
  86. if (str[k][o] != '.') {
  87. F = 0;
  88. break;
  89. }
  90. }
  91. if (!F) break;
  92. for (int k = up[i][j]; k <= down[i][j]; ++k) {
  93. str[k][o] = str[i][j] - 'A' + 'a';
  94. }
  95. }
  96. }
  97. }
  98. }
  99. }
  100. void gaoU1(char str[][N]) {
  101. for (int i = 1; i <= n; ++i) {
  102. for (int j = 1; j <= m; ++j) {
  103. if (str[i][j] > 'A' && str[i][j] <= 'Z') {
  104. for (int o = i - 1; o >= 1; --o) {
  105. int F = 1;
  106. for (int k = up[i][j]; k <= down[i][j]; ++k) {
  107. if (str[o][k] != '.') {
  108. F = 0;
  109. break;
  110. }
  111. }
  112. if (!F) break;
  113. for (int k = up[i][j]; k <= down[i][j]; ++k) {
  114. str[o][k] = str[i][j] - 'A' + 'a';
  115. }
  116. }
  117. }
  118. }
  119. }
  120. }
  121. void gaoD1(char str[][N]) {
  122. for (int i = 1; i <= n; ++i) {
  123. for (int j = 1; j <= m; ++j) {
  124. if (str[i][j] > 'A' && str[i][j] <= 'Z') {
  125. for (int o = i + 1; o <= n; ++o) {
  126. int F = 1;
  127. for (int k = up[i][j]; k <= down[i][j]; ++k) {
  128. if (str[o][k] != '.') {
  129. F = 0;
  130. break;
  131. }
  132. }
  133. if (!F) break;
  134. for (int k = up[i][j]; k <= down[i][j]; ++k) {
  135. str[o][k] = str[i][j] - 'A' + 'a';
  136. }
  137. }
  138. }
  139. }
  140. }
  141. }
  142. void gaoL1(char str[][N]) {
  143. for (int j = 1; j <= m; ++j) {
  144. for (int i = 1; i <= n; ++i) {
  145. if (str[i][j] > 'A' && str[i][j] <= 'Z') {
  146. up[i][j] = j;
  147. for (int o = 1; ; ++o) {
  148. if (j - o < 1) break;
  149. if (str[i][j - o] != '.') break;
  150. up[i][j] = j - o;
  151. str[i][j - o] = str[i][j] - 'A' + 'a';
  152. }
  153. }
  154. }
  155. }
  156. }
  157. void gaoR1(char str[][N]) {
  158. for (int j = m; j >= 1; --j) {
  159. for (int i = 1; i <= n; ++i) {
  160. if (str[i][j] > 'A' && str[i][j] <= 'Z') {
  161. down[i][j] = j;
  162. for (int o = 1; ; ++o) {
  163. if (j + o > m) break;
  164. if (str[i][j + o] != '.') break;
  165. down[i][j] = j + o;
  166. str[i][j + o] = str[i][j] - 'A' + 'a';
  167. }
  168. }
  169. }
  170. }
  171. }
  172. void print(char str[][N]) {
  173. for (int i = 1; i <= n; ++i) printf("%s\n", str[i] + 1);
  174. }
  175. bool ok(char str[][N]) {
  176. for (int i = 1; i <= n; ++i) {
  177. for (int j = 1; j <= m; ++j) {
  178. if (str[i][j] == '.')
  179. return false;
  180. }
  181. }
  182. return true;
  183. }
  184. int main() {
  185. while (scanf("%d %d", &n, &m) != EOF) {
  186. for (int i = 1; i <= n; ++i) {
  187. scanf("%s", str[i] + 1);
  188. }
  189. for (int i = 1; i <= n; ++i) {
  190. for (int j = 1; j <= m; ++j) {
  191. if (str[i][j] == 'A') {
  192. ax = i, ay = j;
  193. }
  194. }
  195. }
  196. for (int i = 1; i <= n; ++i) {
  197. for (int j = 1; j <= m; ++j) {
  198. if (i == 1) {
  199. if (str[i][j] == '.' || str[i][j] == 'A') up[i][j] = 1;
  200. else up[i][j] = 0;
  201. } else {
  202. if (str[i][j] == '.' || str[i][j] == 'A') up[i][j] = up[i - 1][j] + 1;
  203. else up[i][j] = 0;
  204. }
  205. }
  206. }
  207. for (int i = n; i >= 1; --i) {
  208. for (int j = 1; j <= m; ++j) {
  209. if (i == n) {
  210. if (str[i][j] == '.' || str[i][j] == 'A') down[i][j] = 1;
  211. else down[i][j] = 0;
  212. } else {
  213. if (str[i][j] == '.' || str[i][j] == 'A') down[i][j] = down[i + 1][j] + 1;
  214. else down[i][j] = 0;
  215. }
  216. }
  217. }
  218. // get A size
  219. int Max = -1, Maxl = -1 ,Maxr = -1;
  220. for (int l = 1; l <= m; ++l) {
  221. int MinU = INF, MinD = INF;
  222. for (int r = l; r <= m; ++r) {
  223. MinU = min(MinU, up[ax][r]);
  224. MinD = min(MinD, down[ax][r]);
  225. if (r >= ay && l <= ay) {
  226. if (Max < (r - l + 1) * (MinU + MinD - 1)) {
  227. Maxl = l, Maxr = r, Max = (r - l + 1) * (MinU + MinD - 1);
  228. }
  229. }
  230. }
  231. }
  232. // color A size
  233. gaoA(str, Maxl, Maxr);
  234. for (int i = 1; i <= n; ++i) {
  235. for (int j = 1; j <= m; ++j) {
  236. stra[i][j] = str[i][j];
  237. strb[i][j] = str[i][j];
  238. }
  239. }
  240. gaoU(stra);
  241. gaoD(stra);
  242. gaoL(stra);
  243. gaoR(stra);
  244. gaoL1(strb);
  245. gaoR1(strb);
  246. gaoU1(strb);
  247. gaoD1(strb);
  248. if (ok(strb)) print(strb);
  249. else if (ok(stra)) print(stra);
  250. else assert(0);
  251. }
  252. return 0;
  253. }

Problem M. Managing Difficulties

签到题。

代码:

view code
  1. #include <bits/stdc++.h>
  2. using namespace std;
  3. using ll = long long;
  4. const int N = 2e3 + 10;
  5. int n, a[N];
  6. unordered_map <int, int> mp;
  7. int main() {
  8. int _T; scanf("%d", &_T);
  9. while (_T--) {
  10. mp.clear();
  11. scanf("%d", &n);
  12. for (int i = 1; i <= n; ++i) scanf("%d", a + i);
  13. ll res = 0;
  14. for (int i = n; i >= 1; --i) ++mp[a[i]];
  15. for (int i = 1; i <= n; ++i) {
  16. --mp[a[i]];
  17. for (int j = i - 1; j >= 1; --j) {
  18. int x = 2 * a[i] - a[j];
  19. if (mp.count(x)) {
  20. res += mp[x];
  21. }
  22. }
  23. }
  24. printf("%lld\n", res);
  25. }
  26. return 0;
  27. }

ICPC 2019-2020 North-Western Russia Regional Contest的更多相关文章

  1. 2017 ACM - ICPC Asia Ho Chi Minh City Regional Contest

    2017 ACM - ICPC Asia Ho Chi Minh City Regional Contest A - Arranging Wine 题目描述:有\(R\)个红箱和\(W\)个白箱,将这 ...

  2. ICPC Central Russia Regional Contest (CRRC 19)题解

    题目连接:https://codeforces.com/gym/102780 寒假第二次训练赛,(某菜依旧是4个小时后咕咕咕),战况还行,个人表现极差(高级演员) A:Green tea 暴力枚举即可 ...

  3. 05.24 ICPC 2019-2020 North-Western Russia Regional Contest复现赛+Codeforces Round #645 (Div. 2)

    A.Accurate Movement(复现赛) 题意:两个木块最左边都在0的位置,最右边分别为a,b(b>a),并且短的木条只能在长木条内移动,问两个木条需要移动多少次才能使两个木条的右端都在 ...

  4. 2019-2020 ICPC, NERC, Southern and Volga Russian Regional Contest

    目录 Contest Info Solutions A. Berstagram B. The Feast and the Bus C. Trip to Saint Petersburg E. The ...

  5. 2019-2020 ICPC, NERC, Southern and Volga Russian Regional Contest (Online Mirror, ICPC Rules, Teams Preferred)【A题 类型好题】

    A. Berstagram Polycarp recently signed up to a new social network Berstagram. He immediately publish ...

  6. 2020-2021 ICPC, NERC, Southern and Volga Russian Regional Contest (Online Mirror, ICPC Rules) D. Firecrackers (贪心,二分)

    题意:有个长度为\(n\)的监狱,犯人在位置\(a\),cop在位置\(b\),你每次可以向左或者向右移动一个单位,或者选择不动并在原地放一个爆竹\(i\),爆竹\(i\)在\(s[i]\)秒后爆炸, ...

  7. 2020-2021 ICPC, NERC, Southern and Volga Russian Regional Contest (Online Mirror, ICPC Rules) C. Berpizza (STL)

    题意:酒吧里有两个服务员,每个人每次都只能服务一名客人,服务员2按照客人进酒吧的顺序服务,服务员3按照客人的钱来服务,询问\(q\),\(1\)表示有客人进入酒吧,带着\(m\)块钱,\(2\)表示询 ...

  8. ACM ICPC Central Europe Regional Contest 2013 Jagiellonian University Kraków

    ACM ICPC Central Europe Regional Contest 2013 Jagiellonian University Kraków Problem A: Rubik’s Rect ...

  9. ACM ICPC 2010–2011, Northeastern European Regional Contest St Petersburg – Barnaul – Tashkent – Tbilisi, November 24, 2010

    ACM ICPC 2010–2011, Northeastern European Regional Contest St Petersburg – Barnaul – Tashkent – Tbil ...

随机推荐

  1. jqgrid属性以及事件

    转载 1.属性 参数名称 类型 描述 默认值 是否可以被修改 ajaxGridOptions object 对ajax参数进行全局设置,可以覆盖ajax事件:error,complete 和 befo ...

  2. 利用RabbitMQ实现分布式事务

    实现要点:1.构建本地消息表及定时任务,确保消息可靠发送:2.RabbitMQ可靠消费:3.redis保证幂等 两个服务:订单服务和消息服务 订单服务消息可靠发送 使用springboot构建项目,相 ...

  3. ifconfig介绍

    [root@controller01 ~]# ip addr 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNK ...

  4. Java中的反射机制和动态代理

    一.反射概述 反射机制指的是Java在运行时候有一种自观的能力,能够了解自身的情况为下一步做准备,其想表达的意思就是:在运行状态中,对于任意一个类,都能够获取到这个类的所有属性和方法:对于任意一个对象 ...

  5. 【转】JRE和JDK的区别

    用一幅图来宏观的看一下 从图中可以看出JDK包含JRE包含JVM. JDK:java development kit (java开发工具) JRE:java runtime environment ( ...

  6. ubuntu安装之后需要做什么

    安装完ubuntu或者linux后应该做什么?首先在你安装完之后,都知道,很多系统都是有自带的一些软件之类,很多其实是不必要的,我们可以完全删掉,需要的时候再重装,那么安装完之后应该做什么呢? 1.智 ...

  7. 小数据玩转Pyspark(2)

    一.客户画像 客户画像应用:精准营销(精准预测.个性化推荐.联合营销):风险管控(高风险用户识别.异常用户识别.高可疑交易识别):运营优化(快速决策.产品组合优化.舆情分析.服务升级):业务创新(批量 ...

  8. 部署vue项目到阿里云服务器(Ubuntu16.04 64位)

    上传文件 1.通过Xftp将vue项目文件上传至云服务器:由于node_modules这个依赖包体积较大,上传较慢,上传时跳过,在云服务器上重新进行npm install安装依赖包即可: 2.也可通过 ...

  9. django2以后的版本Foreignkey的变动

    目录 class User(AbstractUser): """用户表""" job = models.ManyToManyField(to ...

  10. Codeforces #503 C. Elections(贪心,逆向

    我的参考的博客地址 题目 逆向考虑. 暴力遍历 k(k是1到n/2+1 范围内的),挑出对于每一个k,记对于党派 i,num[ i ]为其票数.num[ i ]小于k-1的就不用改变投票了(这部分是比 ...