Contest Info

Practice Link

Solved A B C D E F G H I J K L M
8/13 O O - - O - - O O O Ø - O
  • O 在比赛中通过
  • Ø 赛后通过
  • ! 尝试了但是失败了
  • - 没有尝试

Solutions

Problem A. Accurate Movement

签到题。

代码:

view code
#include <bits/stdc++.h>
using namespace std;
int ceil(int x, int y) {
return (x + y - 1) / y;
} int main() {
int a, b, n;
while (scanf("%d%d%d", &a, &b, &n) != EOF) {
int res = ceil(n - b, b - a) + ceil(n - a, b - a);
printf("%d\n", res);
}
return 0;
}

Problem B. Bad Treap

题意:

令Treap的一对二维点权为\((f, sin(x))\),现在要给出\(n\)个\(x\),使得这个Treap的深度最大

思路:

考虑很小的时候,\(x = sin(x)\),那么它两维都是单调的,深度最大

代码:

view code
#include <bits/stdc++.h>

using namespace std;

int main() {
int n;
scanf("%d", &n);
for (long long i = 1; i <= n; ++i)
printf("%lld\n", i * 710 - 710 * 25000);
return 0;
}

Problem E. Equidistant

题意:

给出一棵树,再给定\(m\)个点,现在要找一个点,使得这个点到\(m\)个点的距离相等

思路:

以\(m\)个点作为起点跑多源最短路,但是同时要记录到点\(x\)的最短路径条数,当最短路径条数为\(m\)的时候,那么这个点就是合法的

代码:

view code
#include <bits/stdc++.h>

using namespace std;

const int N = 2e5 + 10;

int n, m;
int dep[N], sze[N], a[N], vis[N];
vector<vector<int> >G; void gao() {
queue<int> q;
for (int i = 1; i <= m; ++i) q.push(a[i]);
while (!q.empty()) {
int u = q.front();
q.pop();
for (auto &v : G[u]) {
if (dep[v] == 0 || dep[v] == dep[u] + 1) {
dep[v] = dep[u] + 1;
sze[v] += sze[u];
if (sze[v] == m) {
printf("YES\n%d\n", v);
return ;
}
if (!vis[v]) {
q.push(v);
vis[v] = 1;
}
}
}
}
puts("NO");
} int main() {
while (scanf("%d %d", &n, &m) != EOF) {
G.clear();
G.resize(n + 1);
memset(dep, 0, sizeof dep);
memset(sze, 0, sizeof sze);
memset(vis, 0, sizeof vis);
for (int i = 1, u, v; i < n; ++i) {
scanf("%d %d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
for (int i = 1; i <= m; ++i) {
scanf("%d", a + i);
dep[a[i]] = 1;
sze[a[i]] = 1;
vis[a[i]] = 1;
}
if (n == 1) {
puts("YES\n1");
} else {
gao();
}
}
return 0;
}

Problem H. High Load Database

题意:

给出\(n\)个数\(a_i(\sum a_i \leq 10^6)\),\(q\)次询问给出一个\(t_i\),问将这\(n\)个数分成若干个连续段,使得每段之和不超过\(t_i\)的最小段数

思路:

考虑单次询问显然可以贪心合并,但是我们可以维护一个前缀和,每次二分跳下一个位置,所以处理一个询问的时间是\(O(\text{段数}logn)\)。

并且考虑\(\sum a_i \leq 10^6\),所以所有可行询问的总段数不会很多,直接暴力即可。

代码:

view code
#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
int n, q, Max, a[N], sum[N], ans[N], vis[N]; int getans(int limit) {
if (vis[limit]) return ans[limit];
vis[limit] = 1;
if (Max > limit) {
return ans[limit] = -1;
}
if (limit <= 1000) {
int res = 1, pre = 0;
for (int i = 1; i <= n; ++i) {
if (a[i] + pre <= limit) {
pre += a[i];
} else {
pre = a[i];
++res;
}
}
return ans[limit] = res;
} else {
int res = 0, pos = 0;
while (pos < n) {
++res;
int nx = upper_bound(sum + 1, sum + 1 + n, limit + sum[pos]) - sum - 1;
pos = nx;
}
return ans[limit] = res;
}
} int main() {
while (scanf("%d", &n) != EOF) {
memset(vis, 0, sizeof vis);
sum[0] = 0;
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
Max = max(Max, a[i]);
sum[i] = sum[i - 1] + a[i];
}
scanf("%d", &q);
while (q--) {
int need; scanf("%d", &need);
int res = getans(need);
if (res == -1) puts("Impossible");
else printf("%d\n", res);
}
}
return 0;
}

Problem I. Ideal Pyramid

代码:

view code
#include <bits/stdc++.h>

using namespace std;

const int N = 1e5 + 10;
const int INF = 0x3f3f3f3f; struct node {
int x, y, z; node() {} node(int x, int y, int z): x(x), y(y), z(z) {}
}a[N]; int n;
int x, y; bool ok(int h) {
int l = -INF, r = INF, u = INF, d = -INF;
for (int i = 1; i <= n; ++i) {
if (h < a[i].z) return false;
int x = h - a[i].z;
l = max(l, a[i].x - x);
r = min(r, a[i].x + x);
u = min(u, a[i].y + x);
d = max(d, a[i].y - x);
}
if (l > r || d > u) return false;
x = l, y = d;
return true;
} int main() {
while (scanf("%d", &n) != EOF) {
for (int i = 1; i <= n; ++i) {
scanf("%d %d %d", &a[i].x, &a[i].y, &a[i].z);
}
int l = 0, r = INF, res = INF;
x = INF, y = INF;
while (r - l >= 0) {
int mid = (l + r) >> 1;
if (ok(mid)) {
r = mid -1;
res = mid;
} else {
l = mid + 1;
}
}
ok(res);
printf("%d %d %d\n", x, y, res);
}
return 0;
}

Problem J. Just the Last Digit

题意:

有一个\(n\)个点的有向图,\(i\) 到 \(j\)有边,那么必然有\(i < j\)。

现在给出\(a_{i, j} = i \rightarrow j\)的路径条数模\(10\)的结果,要你还原这个图。

思路:

正着推,考虑新加入一个点\(k\)的时候,我们枚举一个点\(i(i < k)\),如果\(i\)到\(k\)通过点\(j(i < j < k)\)中转的路径之和模\(10\)不等于\(a_{i, j}\),那么\(i \rightarrow k\)这条边是存在的,否则不存在

代码:

view code
#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

const int N = 510;

int n;
char a[N][N];
int res[N][N]; int main() {
while (scanf("%d", &n) != EOF) {
memset(res, 0, sizeof res);
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
scanf(" %c", &a[i][j]);
}
}
for (int i = 1; i <= n; ++i) {
for (int j = i + 1; j <= n; ++j) {
int sum = 0;
for (int k = i + 1; k < j; ++k) {
if (res[i][k]) sum += a[k][j] - '0';
}
if ((sum + 1) % 10 == a[i][j] - '0') res[i][j] = 1;
}
}
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
printf("%d", res[i][j]);
}
puts("");
}
}
return 0;
}

Problem K. King’s Children

题意:

给出一个\(n \cdot m\)的矩形,上面的'.'表示空地,字母表示国王的儿子,'A'表示大儿子。

现在要给每个儿子划分城市,每个城市必须是一个矩形,每块空地只能属于一个城市,一个城市里面只能包含一个儿子。

但是大儿子划分得到的空地数量要尽可能的多,但不一定是最多。

思路:

对'A'找一个极大子矩形,挖空后将剩下的分完。

考虑两种分法:

  • 先竖向扩展,然后横向扩展
  • 先横向扩展,然后竖向扩展

这两种分法不可能同时不成立,不太知道为啥(猜的)。。

代码:

view code
#include <bits/stdc++.h>
using namespace std;
#define dbg(x...) do { cout << "\033[32;1m" << #x << " -> "; err(x); } while(0)
void err() { cout << "\033[39;0m" << endl; }
template <class T, class... Ts> void err(const T&arg, const Ts&... args) { cout << arg << " "; err(args...); }
const int N = 1e3 + 10;
const int INF = 0x3f3f3f3f;
int n, m, ax, ay;
char str[N][N], stra[N][N], strb[N][N];
int up[N][N], down[N][N];
int X[N], Y[N]; void gaoA(char str[][N], int l, int r) {
int MinU = INF, MinD = INF;
for (int i = l; i <= r; ++i) {
MinU = min(MinU, up[ax][i]);
MinD = min(MinD, down[ax][i]);
}
for (int i = l; i <= r; ++i) {
for (int j = 1; j <= MinU; ++j) {
str[ax - j + 1][i] = 'a';
}
for (int j = 1; j <= MinD; ++j) {
str[ax + j - 1][i] = 'a';
}
}
str[ax][ay] = 'A';
} void gaoU(char str[][N]) {
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
if (str[i][j] > 'A' && str[i][j] <= 'Z') {
up[i][j] = i;
for (int o = 1; ; ++o) {
if (i - o < 1) break;
if (str[i - o][j] != '.') break;
up[i][j] = i - o;
str[i - o][j] = str[i][j] - 'A' + 'a';
}
}
}
}
} void gaoD(char str[][N]) {
for (int i = 1; i <= n; ++i) {
for (int j = m; j >= 1; --j) {
if (str[i][j] > 'A' && str[i][j] <= 'Z') {
down[i][j] = i;
for (int o = 1; ; ++o) {
if (i + o > n) break;
if (str[i + o][j] != '.') break;
down[i][j] = i + o;
str[i + o][j] = str[i][j] - 'A' + 'a';
}
}
}
}
} void gaoL(char str[][N]) {
for (int j = 1; j <= m; ++j) {
for (int i = 1; i <= n; ++i) {
if (str[i][j] > 'A' && str[i][j] <= 'Z') {
for (int o = j - 1; o >= 1; --o) {
int F = 1;
for (int k = up[i][j]; k <= down[i][j]; ++k) {
if (str[k][o] != '.') {
F = 0;
break;
}
}
if (!F) break;
for (int k = up[i][j]; k <= down[i][j]; ++k) {
str[k][o] = str[i][j] - 'A' + 'a';
}
}
}
}
}
} void gaoR(char str[][N]) {
for (int j = m; j >= 1; --j) {
for (int i = 1; i <= n; ++i) {
if (str[i][j] > 'A' && str[i][j] <= 'Z') {
for (int o = j + 1; o <= m; ++o) {
int F = 1;
for (int k = up[i][j]; k <= down[i][j]; ++k) {
if (str[k][o] != '.') {
F = 0;
break;
}
}
if (!F) break;
for (int k = up[i][j]; k <= down[i][j]; ++k) {
str[k][o] = str[i][j] - 'A' + 'a';
}
}
}
}
}
} void gaoU1(char str[][N]) {
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
if (str[i][j] > 'A' && str[i][j] <= 'Z') {
for (int o = i - 1; o >= 1; --o) {
int F = 1;
for (int k = up[i][j]; k <= down[i][j]; ++k) {
if (str[o][k] != '.') {
F = 0;
break;
}
}
if (!F) break;
for (int k = up[i][j]; k <= down[i][j]; ++k) {
str[o][k] = str[i][j] - 'A' + 'a';
}
}
}
}
}
} void gaoD1(char str[][N]) {
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
if (str[i][j] > 'A' && str[i][j] <= 'Z') {
for (int o = i + 1; o <= n; ++o) {
int F = 1;
for (int k = up[i][j]; k <= down[i][j]; ++k) {
if (str[o][k] != '.') {
F = 0;
break;
}
}
if (!F) break;
for (int k = up[i][j]; k <= down[i][j]; ++k) {
str[o][k] = str[i][j] - 'A' + 'a';
}
}
}
}
}
} void gaoL1(char str[][N]) {
for (int j = 1; j <= m; ++j) {
for (int i = 1; i <= n; ++i) {
if (str[i][j] > 'A' && str[i][j] <= 'Z') {
up[i][j] = j;
for (int o = 1; ; ++o) {
if (j - o < 1) break;
if (str[i][j - o] != '.') break;
up[i][j] = j - o;
str[i][j - o] = str[i][j] - 'A' + 'a';
}
}
}
}
} void gaoR1(char str[][N]) {
for (int j = m; j >= 1; --j) {
for (int i = 1; i <= n; ++i) {
if (str[i][j] > 'A' && str[i][j] <= 'Z') {
down[i][j] = j;
for (int o = 1; ; ++o) {
if (j + o > m) break;
if (str[i][j + o] != '.') break;
down[i][j] = j + o;
str[i][j + o] = str[i][j] - 'A' + 'a';
}
}
}
}
} void print(char str[][N]) {
for (int i = 1; i <= n; ++i) printf("%s\n", str[i] + 1);
} bool ok(char str[][N]) {
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
if (str[i][j] == '.')
return false;
}
}
return true;
} int main() {
while (scanf("%d %d", &n, &m) != EOF) {
for (int i = 1; i <= n; ++i) {
scanf("%s", str[i] + 1);
}
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
if (str[i][j] == 'A') {
ax = i, ay = j;
}
}
}
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
if (i == 1) {
if (str[i][j] == '.' || str[i][j] == 'A') up[i][j] = 1;
else up[i][j] = 0;
} else {
if (str[i][j] == '.' || str[i][j] == 'A') up[i][j] = up[i - 1][j] + 1;
else up[i][j] = 0;
}
}
}
for (int i = n; i >= 1; --i) {
for (int j = 1; j <= m; ++j) {
if (i == n) {
if (str[i][j] == '.' || str[i][j] == 'A') down[i][j] = 1;
else down[i][j] = 0;
} else {
if (str[i][j] == '.' || str[i][j] == 'A') down[i][j] = down[i + 1][j] + 1;
else down[i][j] = 0;
}
}
}
// get A size
int Max = -1, Maxl = -1 ,Maxr = -1;
for (int l = 1; l <= m; ++l) {
int MinU = INF, MinD = INF;
for (int r = l; r <= m; ++r) {
MinU = min(MinU, up[ax][r]);
MinD = min(MinD, down[ax][r]);
if (r >= ay && l <= ay) {
if (Max < (r - l + 1) * (MinU + MinD - 1)) {
Maxl = l, Maxr = r, Max = (r - l + 1) * (MinU + MinD - 1);
}
}
}
}
// color A size
gaoA(str, Maxl, Maxr);
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
stra[i][j] = str[i][j];
strb[i][j] = str[i][j];
}
} gaoU(stra);
gaoD(stra);
gaoL(stra);
gaoR(stra); gaoL1(strb);
gaoR1(strb);
gaoU1(strb);
gaoD1(strb); if (ok(strb)) print(strb);
else if (ok(stra)) print(stra);
else assert(0);
}
return 0;
}

Problem M. Managing Difficulties

签到题。

代码:

view code
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int N = 2e3 + 10;
int n, a[N];
unordered_map <int, int> mp; int main() {
int _T; scanf("%d", &_T);
while (_T--) {
mp.clear();
scanf("%d", &n);
for (int i = 1; i <= n; ++i) scanf("%d", a + i);
ll res = 0;
for (int i = n; i >= 1; --i) ++mp[a[i]];
for (int i = 1; i <= n; ++i) {
--mp[a[i]];
for (int j = i - 1; j >= 1; --j) {
int x = 2 * a[i] - a[j];
if (mp.count(x)) {
res += mp[x];
}
}
}
printf("%lld\n", res);
}
return 0;
}

ICPC 2019-2020 North-Western Russia Regional Contest的更多相关文章

  1. 2017 ACM - ICPC Asia Ho Chi Minh City Regional Contest

    2017 ACM - ICPC Asia Ho Chi Minh City Regional Contest A - Arranging Wine 题目描述:有\(R\)个红箱和\(W\)个白箱,将这 ...

  2. ICPC Central Russia Regional Contest (CRRC 19)题解

    题目连接:https://codeforces.com/gym/102780 寒假第二次训练赛,(某菜依旧是4个小时后咕咕咕),战况还行,个人表现极差(高级演员) A:Green tea 暴力枚举即可 ...

  3. 05.24 ICPC 2019-2020 North-Western Russia Regional Contest复现赛+Codeforces Round #645 (Div. 2)

    A.Accurate Movement(复现赛) 题意:两个木块最左边都在0的位置,最右边分别为a,b(b>a),并且短的木条只能在长木条内移动,问两个木条需要移动多少次才能使两个木条的右端都在 ...

  4. 2019-2020 ICPC, NERC, Southern and Volga Russian Regional Contest

    目录 Contest Info Solutions A. Berstagram B. The Feast and the Bus C. Trip to Saint Petersburg E. The ...

  5. 2019-2020 ICPC, NERC, Southern and Volga Russian Regional Contest (Online Mirror, ICPC Rules, Teams Preferred)【A题 类型好题】

    A. Berstagram Polycarp recently signed up to a new social network Berstagram. He immediately publish ...

  6. 2020-2021 ICPC, NERC, Southern and Volga Russian Regional Contest (Online Mirror, ICPC Rules) D. Firecrackers (贪心,二分)

    题意:有个长度为\(n\)的监狱,犯人在位置\(a\),cop在位置\(b\),你每次可以向左或者向右移动一个单位,或者选择不动并在原地放一个爆竹\(i\),爆竹\(i\)在\(s[i]\)秒后爆炸, ...

  7. 2020-2021 ICPC, NERC, Southern and Volga Russian Regional Contest (Online Mirror, ICPC Rules) C. Berpizza (STL)

    题意:酒吧里有两个服务员,每个人每次都只能服务一名客人,服务员2按照客人进酒吧的顺序服务,服务员3按照客人的钱来服务,询问\(q\),\(1\)表示有客人进入酒吧,带着\(m\)块钱,\(2\)表示询 ...

  8. ACM ICPC Central Europe Regional Contest 2013 Jagiellonian University Kraków

    ACM ICPC Central Europe Regional Contest 2013 Jagiellonian University Kraków Problem A: Rubik’s Rect ...

  9. ACM ICPC 2010–2011, Northeastern European Regional Contest St Petersburg – Barnaul – Tashkent – Tbilisi, November 24, 2010

    ACM ICPC 2010–2011, Northeastern European Regional Contest St Petersburg – Barnaul – Tashkent – Tbil ...

随机推荐

  1. ES6语法基本使用

    什么是ES6? ECMAScript 6(以下简称ES6)是JavaScript语言的下一代标准,已经在2015年6月正式发布了.Mozilla公司将在这个标准的基础上,推出JavaScript 2. ...

  2. stm32f103re stop模式下降低功耗

    一端口设置1.将N.C的GPIO统一配置为GPIO_Mode_AIN: 2.检查输入引脚,按照不工作时候的状态相应配置为  IPD/IPU,即避免在内部上/下拉电阻上消耗电流,而且该电流理论值为VCC ...

  3. 【SoloPi】SoloPi使用4-功能使用,一机多控

    Soloπ是什么Soloπ是一个无线化.非侵入式的Android自动化工具,公测版拥有录制回放.性能测试.一机多控三项主要功能,能为测试开发人员节省宝贵时间. 一机多控功能Soloπ支持通过操作一台主 ...

  4. POJ1861(Network)-Kruskal

    题目在这 Sample Input 4 6 1 2 1 1 3 1 1 4 2 2 3 1 3 4 1 2 4 1 Sample Output 1 4 1 2 1 3 2 3 3 4 题目意思:4个点 ...

  5. cell上的按钮点击和左滑冲突

    cell上的某个按钮的点击事件,当cell左滑的时候,只要活动的区域也在按钮上,那么按钮的点击事件也会调用. fix: 给按钮添加一个手势(TapGesture)那么当点击的时候就会响应点击手势的方法 ...

  6. 九、分组查询详解(group by & having)

    本篇内容 分组查询语法 聚合函数 单字段分组 多字段分组 分组前筛选数据 分组后筛选数据 where和having的区别 分组后排序 where & group by & having ...

  7. L ==> E · L · K

    三剑客:Elastic Stack 在学习ELK前,先对 Lucene作基本了解. 今天才知道关系型数据库的索引是 B-Tree,罪过... 减少磁盘寻道次数 ---> 提高查询性能 Lucen ...

  8. -bash: 无法为立即文档创建临时文件: 设备上没有空间---记一次报错

    故障发生原因 测试环境,之前用该机器做过docker-compose,后来有需要用到该机器上的docker环境,需要将旧的docker容器全部删除,由于之前启动是使用docker-compose启动的 ...

  9. Computer Vision_33_SIFT:A novel coarse-to-fine scheme for automatic image registration based on SIFT and mutual information——2014

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  10. 【DRF框架】利用序列化组件操作

    使用序列化组件进行操作 不带参数:查+增 带参数:查.改.删 不带参数的操作 # url路由 url(r'^book_list/$',Search_book.as_view()), # views.p ...