Contest Info

Practice Link

Solved A B C D E F G H I J K L M
8/13 O O - - O - - O O O Ø - O
  • O 在比赛中通过
  • Ø 赛后通过
  • ! 尝试了但是失败了
  • - 没有尝试

Solutions

Problem A. Accurate Movement

签到题。

代码:

view code
#include <bits/stdc++.h>
using namespace std;
int ceil(int x, int y) {
return (x + y - 1) / y;
} int main() {
int a, b, n;
while (scanf("%d%d%d", &a, &b, &n) != EOF) {
int res = ceil(n - b, b - a) + ceil(n - a, b - a);
printf("%d\n", res);
}
return 0;
}

Problem B. Bad Treap

题意:

令Treap的一对二维点权为\((f, sin(x))\),现在要给出\(n\)个\(x\),使得这个Treap的深度最大

思路:

考虑很小的时候,\(x = sin(x)\),那么它两维都是单调的,深度最大

代码:

view code
#include <bits/stdc++.h>

using namespace std;

int main() {
int n;
scanf("%d", &n);
for (long long i = 1; i <= n; ++i)
printf("%lld\n", i * 710 - 710 * 25000);
return 0;
}

Problem E. Equidistant

题意:

给出一棵树,再给定\(m\)个点,现在要找一个点,使得这个点到\(m\)个点的距离相等

思路:

以\(m\)个点作为起点跑多源最短路,但是同时要记录到点\(x\)的最短路径条数,当最短路径条数为\(m\)的时候,那么这个点就是合法的

代码:

view code
#include <bits/stdc++.h>

using namespace std;

const int N = 2e5 + 10;

int n, m;
int dep[N], sze[N], a[N], vis[N];
vector<vector<int> >G; void gao() {
queue<int> q;
for (int i = 1; i <= m; ++i) q.push(a[i]);
while (!q.empty()) {
int u = q.front();
q.pop();
for (auto &v : G[u]) {
if (dep[v] == 0 || dep[v] == dep[u] + 1) {
dep[v] = dep[u] + 1;
sze[v] += sze[u];
if (sze[v] == m) {
printf("YES\n%d\n", v);
return ;
}
if (!vis[v]) {
q.push(v);
vis[v] = 1;
}
}
}
}
puts("NO");
} int main() {
while (scanf("%d %d", &n, &m) != EOF) {
G.clear();
G.resize(n + 1);
memset(dep, 0, sizeof dep);
memset(sze, 0, sizeof sze);
memset(vis, 0, sizeof vis);
for (int i = 1, u, v; i < n; ++i) {
scanf("%d %d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
for (int i = 1; i <= m; ++i) {
scanf("%d", a + i);
dep[a[i]] = 1;
sze[a[i]] = 1;
vis[a[i]] = 1;
}
if (n == 1) {
puts("YES\n1");
} else {
gao();
}
}
return 0;
}

Problem H. High Load Database

题意:

给出\(n\)个数\(a_i(\sum a_i \leq 10^6)\),\(q\)次询问给出一个\(t_i\),问将这\(n\)个数分成若干个连续段,使得每段之和不超过\(t_i\)的最小段数

思路:

考虑单次询问显然可以贪心合并,但是我们可以维护一个前缀和,每次二分跳下一个位置,所以处理一个询问的时间是\(O(\text{段数}logn)\)。

并且考虑\(\sum a_i \leq 10^6\),所以所有可行询问的总段数不会很多,直接暴力即可。

代码:

view code
#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
int n, q, Max, a[N], sum[N], ans[N], vis[N]; int getans(int limit) {
if (vis[limit]) return ans[limit];
vis[limit] = 1;
if (Max > limit) {
return ans[limit] = -1;
}
if (limit <= 1000) {
int res = 1, pre = 0;
for (int i = 1; i <= n; ++i) {
if (a[i] + pre <= limit) {
pre += a[i];
} else {
pre = a[i];
++res;
}
}
return ans[limit] = res;
} else {
int res = 0, pos = 0;
while (pos < n) {
++res;
int nx = upper_bound(sum + 1, sum + 1 + n, limit + sum[pos]) - sum - 1;
pos = nx;
}
return ans[limit] = res;
}
} int main() {
while (scanf("%d", &n) != EOF) {
memset(vis, 0, sizeof vis);
sum[0] = 0;
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
Max = max(Max, a[i]);
sum[i] = sum[i - 1] + a[i];
}
scanf("%d", &q);
while (q--) {
int need; scanf("%d", &need);
int res = getans(need);
if (res == -1) puts("Impossible");
else printf("%d\n", res);
}
}
return 0;
}

Problem I. Ideal Pyramid

代码:

view code
#include <bits/stdc++.h>

using namespace std;

const int N = 1e5 + 10;
const int INF = 0x3f3f3f3f; struct node {
int x, y, z; node() {} node(int x, int y, int z): x(x), y(y), z(z) {}
}a[N]; int n;
int x, y; bool ok(int h) {
int l = -INF, r = INF, u = INF, d = -INF;
for (int i = 1; i <= n; ++i) {
if (h < a[i].z) return false;
int x = h - a[i].z;
l = max(l, a[i].x - x);
r = min(r, a[i].x + x);
u = min(u, a[i].y + x);
d = max(d, a[i].y - x);
}
if (l > r || d > u) return false;
x = l, y = d;
return true;
} int main() {
while (scanf("%d", &n) != EOF) {
for (int i = 1; i <= n; ++i) {
scanf("%d %d %d", &a[i].x, &a[i].y, &a[i].z);
}
int l = 0, r = INF, res = INF;
x = INF, y = INF;
while (r - l >= 0) {
int mid = (l + r) >> 1;
if (ok(mid)) {
r = mid -1;
res = mid;
} else {
l = mid + 1;
}
}
ok(res);
printf("%d %d %d\n", x, y, res);
}
return 0;
}

Problem J. Just the Last Digit

题意:

有一个\(n\)个点的有向图,\(i\) 到 \(j\)有边,那么必然有\(i < j\)。

现在给出\(a_{i, j} = i \rightarrow j\)的路径条数模\(10\)的结果,要你还原这个图。

思路:

正着推,考虑新加入一个点\(k\)的时候,我们枚举一个点\(i(i < k)\),如果\(i\)到\(k\)通过点\(j(i < j < k)\)中转的路径之和模\(10\)不等于\(a_{i, j}\),那么\(i \rightarrow k\)这条边是存在的,否则不存在

代码:

view code
#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

const int N = 510;

int n;
char a[N][N];
int res[N][N]; int main() {
while (scanf("%d", &n) != EOF) {
memset(res, 0, sizeof res);
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
scanf(" %c", &a[i][j]);
}
}
for (int i = 1; i <= n; ++i) {
for (int j = i + 1; j <= n; ++j) {
int sum = 0;
for (int k = i + 1; k < j; ++k) {
if (res[i][k]) sum += a[k][j] - '0';
}
if ((sum + 1) % 10 == a[i][j] - '0') res[i][j] = 1;
}
}
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
printf("%d", res[i][j]);
}
puts("");
}
}
return 0;
}

Problem K. King’s Children

题意:

给出一个\(n \cdot m\)的矩形,上面的'.'表示空地,字母表示国王的儿子,'A'表示大儿子。

现在要给每个儿子划分城市,每个城市必须是一个矩形,每块空地只能属于一个城市,一个城市里面只能包含一个儿子。

但是大儿子划分得到的空地数量要尽可能的多,但不一定是最多。

思路:

对'A'找一个极大子矩形,挖空后将剩下的分完。

考虑两种分法:

  • 先竖向扩展,然后横向扩展
  • 先横向扩展,然后竖向扩展

这两种分法不可能同时不成立,不太知道为啥(猜的)。。

代码:

view code
#include <bits/stdc++.h>
using namespace std;
#define dbg(x...) do { cout << "\033[32;1m" << #x << " -> "; err(x); } while(0)
void err() { cout << "\033[39;0m" << endl; }
template <class T, class... Ts> void err(const T&arg, const Ts&... args) { cout << arg << " "; err(args...); }
const int N = 1e3 + 10;
const int INF = 0x3f3f3f3f;
int n, m, ax, ay;
char str[N][N], stra[N][N], strb[N][N];
int up[N][N], down[N][N];
int X[N], Y[N]; void gaoA(char str[][N], int l, int r) {
int MinU = INF, MinD = INF;
for (int i = l; i <= r; ++i) {
MinU = min(MinU, up[ax][i]);
MinD = min(MinD, down[ax][i]);
}
for (int i = l; i <= r; ++i) {
for (int j = 1; j <= MinU; ++j) {
str[ax - j + 1][i] = 'a';
}
for (int j = 1; j <= MinD; ++j) {
str[ax + j - 1][i] = 'a';
}
}
str[ax][ay] = 'A';
} void gaoU(char str[][N]) {
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
if (str[i][j] > 'A' && str[i][j] <= 'Z') {
up[i][j] = i;
for (int o = 1; ; ++o) {
if (i - o < 1) break;
if (str[i - o][j] != '.') break;
up[i][j] = i - o;
str[i - o][j] = str[i][j] - 'A' + 'a';
}
}
}
}
} void gaoD(char str[][N]) {
for (int i = 1; i <= n; ++i) {
for (int j = m; j >= 1; --j) {
if (str[i][j] > 'A' && str[i][j] <= 'Z') {
down[i][j] = i;
for (int o = 1; ; ++o) {
if (i + o > n) break;
if (str[i + o][j] != '.') break;
down[i][j] = i + o;
str[i + o][j] = str[i][j] - 'A' + 'a';
}
}
}
}
} void gaoL(char str[][N]) {
for (int j = 1; j <= m; ++j) {
for (int i = 1; i <= n; ++i) {
if (str[i][j] > 'A' && str[i][j] <= 'Z') {
for (int o = j - 1; o >= 1; --o) {
int F = 1;
for (int k = up[i][j]; k <= down[i][j]; ++k) {
if (str[k][o] != '.') {
F = 0;
break;
}
}
if (!F) break;
for (int k = up[i][j]; k <= down[i][j]; ++k) {
str[k][o] = str[i][j] - 'A' + 'a';
}
}
}
}
}
} void gaoR(char str[][N]) {
for (int j = m; j >= 1; --j) {
for (int i = 1; i <= n; ++i) {
if (str[i][j] > 'A' && str[i][j] <= 'Z') {
for (int o = j + 1; o <= m; ++o) {
int F = 1;
for (int k = up[i][j]; k <= down[i][j]; ++k) {
if (str[k][o] != '.') {
F = 0;
break;
}
}
if (!F) break;
for (int k = up[i][j]; k <= down[i][j]; ++k) {
str[k][o] = str[i][j] - 'A' + 'a';
}
}
}
}
}
} void gaoU1(char str[][N]) {
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
if (str[i][j] > 'A' && str[i][j] <= 'Z') {
for (int o = i - 1; o >= 1; --o) {
int F = 1;
for (int k = up[i][j]; k <= down[i][j]; ++k) {
if (str[o][k] != '.') {
F = 0;
break;
}
}
if (!F) break;
for (int k = up[i][j]; k <= down[i][j]; ++k) {
str[o][k] = str[i][j] - 'A' + 'a';
}
}
}
}
}
} void gaoD1(char str[][N]) {
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
if (str[i][j] > 'A' && str[i][j] <= 'Z') {
for (int o = i + 1; o <= n; ++o) {
int F = 1;
for (int k = up[i][j]; k <= down[i][j]; ++k) {
if (str[o][k] != '.') {
F = 0;
break;
}
}
if (!F) break;
for (int k = up[i][j]; k <= down[i][j]; ++k) {
str[o][k] = str[i][j] - 'A' + 'a';
}
}
}
}
}
} void gaoL1(char str[][N]) {
for (int j = 1; j <= m; ++j) {
for (int i = 1; i <= n; ++i) {
if (str[i][j] > 'A' && str[i][j] <= 'Z') {
up[i][j] = j;
for (int o = 1; ; ++o) {
if (j - o < 1) break;
if (str[i][j - o] != '.') break;
up[i][j] = j - o;
str[i][j - o] = str[i][j] - 'A' + 'a';
}
}
}
}
} void gaoR1(char str[][N]) {
for (int j = m; j >= 1; --j) {
for (int i = 1; i <= n; ++i) {
if (str[i][j] > 'A' && str[i][j] <= 'Z') {
down[i][j] = j;
for (int o = 1; ; ++o) {
if (j + o > m) break;
if (str[i][j + o] != '.') break;
down[i][j] = j + o;
str[i][j + o] = str[i][j] - 'A' + 'a';
}
}
}
}
} void print(char str[][N]) {
for (int i = 1; i <= n; ++i) printf("%s\n", str[i] + 1);
} bool ok(char str[][N]) {
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
if (str[i][j] == '.')
return false;
}
}
return true;
} int main() {
while (scanf("%d %d", &n, &m) != EOF) {
for (int i = 1; i <= n; ++i) {
scanf("%s", str[i] + 1);
}
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
if (str[i][j] == 'A') {
ax = i, ay = j;
}
}
}
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
if (i == 1) {
if (str[i][j] == '.' || str[i][j] == 'A') up[i][j] = 1;
else up[i][j] = 0;
} else {
if (str[i][j] == '.' || str[i][j] == 'A') up[i][j] = up[i - 1][j] + 1;
else up[i][j] = 0;
}
}
}
for (int i = n; i >= 1; --i) {
for (int j = 1; j <= m; ++j) {
if (i == n) {
if (str[i][j] == '.' || str[i][j] == 'A') down[i][j] = 1;
else down[i][j] = 0;
} else {
if (str[i][j] == '.' || str[i][j] == 'A') down[i][j] = down[i + 1][j] + 1;
else down[i][j] = 0;
}
}
}
// get A size
int Max = -1, Maxl = -1 ,Maxr = -1;
for (int l = 1; l <= m; ++l) {
int MinU = INF, MinD = INF;
for (int r = l; r <= m; ++r) {
MinU = min(MinU, up[ax][r]);
MinD = min(MinD, down[ax][r]);
if (r >= ay && l <= ay) {
if (Max < (r - l + 1) * (MinU + MinD - 1)) {
Maxl = l, Maxr = r, Max = (r - l + 1) * (MinU + MinD - 1);
}
}
}
}
// color A size
gaoA(str, Maxl, Maxr);
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
stra[i][j] = str[i][j];
strb[i][j] = str[i][j];
}
} gaoU(stra);
gaoD(stra);
gaoL(stra);
gaoR(stra); gaoL1(strb);
gaoR1(strb);
gaoU1(strb);
gaoD1(strb); if (ok(strb)) print(strb);
else if (ok(stra)) print(stra);
else assert(0);
}
return 0;
}

Problem M. Managing Difficulties

签到题。

代码:

view code
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int N = 2e3 + 10;
int n, a[N];
unordered_map <int, int> mp; int main() {
int _T; scanf("%d", &_T);
while (_T--) {
mp.clear();
scanf("%d", &n);
for (int i = 1; i <= n; ++i) scanf("%d", a + i);
ll res = 0;
for (int i = n; i >= 1; --i) ++mp[a[i]];
for (int i = 1; i <= n; ++i) {
--mp[a[i]];
for (int j = i - 1; j >= 1; --j) {
int x = 2 * a[i] - a[j];
if (mp.count(x)) {
res += mp[x];
}
}
}
printf("%lld\n", res);
}
return 0;
}

ICPC 2019-2020 North-Western Russia Regional Contest的更多相关文章

  1. 2017 ACM - ICPC Asia Ho Chi Minh City Regional Contest

    2017 ACM - ICPC Asia Ho Chi Minh City Regional Contest A - Arranging Wine 题目描述:有\(R\)个红箱和\(W\)个白箱,将这 ...

  2. ICPC Central Russia Regional Contest (CRRC 19)题解

    题目连接:https://codeforces.com/gym/102780 寒假第二次训练赛,(某菜依旧是4个小时后咕咕咕),战况还行,个人表现极差(高级演员) A:Green tea 暴力枚举即可 ...

  3. 05.24 ICPC 2019-2020 North-Western Russia Regional Contest复现赛+Codeforces Round #645 (Div. 2)

    A.Accurate Movement(复现赛) 题意:两个木块最左边都在0的位置,最右边分别为a,b(b>a),并且短的木条只能在长木条内移动,问两个木条需要移动多少次才能使两个木条的右端都在 ...

  4. 2019-2020 ICPC, NERC, Southern and Volga Russian Regional Contest

    目录 Contest Info Solutions A. Berstagram B. The Feast and the Bus C. Trip to Saint Petersburg E. The ...

  5. 2019-2020 ICPC, NERC, Southern and Volga Russian Regional Contest (Online Mirror, ICPC Rules, Teams Preferred)【A题 类型好题】

    A. Berstagram Polycarp recently signed up to a new social network Berstagram. He immediately publish ...

  6. 2020-2021 ICPC, NERC, Southern and Volga Russian Regional Contest (Online Mirror, ICPC Rules) D. Firecrackers (贪心,二分)

    题意:有个长度为\(n\)的监狱,犯人在位置\(a\),cop在位置\(b\),你每次可以向左或者向右移动一个单位,或者选择不动并在原地放一个爆竹\(i\),爆竹\(i\)在\(s[i]\)秒后爆炸, ...

  7. 2020-2021 ICPC, NERC, Southern and Volga Russian Regional Contest (Online Mirror, ICPC Rules) C. Berpizza (STL)

    题意:酒吧里有两个服务员,每个人每次都只能服务一名客人,服务员2按照客人进酒吧的顺序服务,服务员3按照客人的钱来服务,询问\(q\),\(1\)表示有客人进入酒吧,带着\(m\)块钱,\(2\)表示询 ...

  8. ACM ICPC Central Europe Regional Contest 2013 Jagiellonian University Kraków

    ACM ICPC Central Europe Regional Contest 2013 Jagiellonian University Kraków Problem A: Rubik’s Rect ...

  9. ACM ICPC 2010–2011, Northeastern European Regional Contest St Petersburg – Barnaul – Tashkent – Tbilisi, November 24, 2010

    ACM ICPC 2010–2011, Northeastern European Regional Contest St Petersburg – Barnaul – Tashkent – Tbil ...

随机推荐

  1. Python内存加载shellcode

    生成 首先生成一个测试的msf shellcode msfvenom -p windows/x64/exec CMD=calc.exe -f python 把其中的shellcode复制出来留待待会使 ...

  2. spring的事务解决方案之@Transactional注解

    首先此注解位于 org.springframework.transaction.annotation 这个包路径下面, 事务有两种类别,一种是编程式事务,另一种是声明式事务,显然此注解是声明式事务,这 ...

  3. 集合并卷积的三种求法(分治乘法,快速莫比乌斯变换(FMT),快速沃尔什变换(FWT))

    也许更好的阅读体验 本文主要内容是对武汉市第二中学吕凯风同学的论文<集合幂级数的性质与应用及其快速算法>的理解 定义 集合幂级数 为了更方便的研究集合的卷积,引入集合幂级数的概念 集合幂级 ...

  4. PAT-1107 Social Clusters (30 分) 并查集模板

    1107 Social Clusters (30 分) When register on a social network, you are always asked to specify your ...

  5. axios 发 post 请求,后端接收不到参数的解决方案(转载)

    原文地址:https://www.cnblogs.com/yiyi17/p/9409249.html 问题场景 场景很简单,就是一个正常 axios post 请求: axios({ headers: ...

  6. 读取经纬度坐标并存储为字典格式,即key为ID,value为轨迹点

    示例数据: #格式为txt文本 ID,L,B 001,116.5154,45.1154 001,116.5160,45.1153 ... 002,xxx,xxx ... 目标:建立轨迹数据结构,即di ...

  7. Go part 7 反射,反射类型对象,反射值对象

    反射 反射是指在程序运行期间对程序本身进行访问和修改的能力,(程序在编译时,变量被转换为内存地址,变量名不会被编译器写入到可执行部分,在运行程序时,程序无法获取自身的信息) 支持反射的语言可以在程序编 ...

  8. Android笔记(十七) Android中的Service

    定义和用途 Service是Android的四大组件之一,一直在后台运行,没有用户界面.Service组件通常用于为其他组件提供后台服务或者监控其他组件的运行状态,例如播放音乐.记录地理位置,监听用户 ...

  9. RestFramework之频率组件

    一.频率组件的使用 频率组件的存在对我们这web开发有着很大的影像,它的作用就是限制用户在一段时间内访问的次数. 下面让我们介绍一下频率组件怎样使用 1.首先需要导入 from rest_framew ...

  10. 2019-ACM-ICPC-南京区网络赛-D. Robots-DAG图上概率动态规划

    2019-ACM-ICPC-南京区网络赛-D. Robots-DAG图上概率动态规划 [Problem Description] ​ 有向无环图中,有个机器人从\(1\)号节点出发,每天等概率的走到下 ...