luogu_P4767 [IOI2000]邮局
传送门
Description
高速公路旁边有一些村庄。高速公路表示为整数轴,每个村庄的位置用单个整数坐标标识。没有两个在同样地方的村庄。两个位置之间的距离是其整数坐标差的绝对值。
邮局将建在一些,但不一定是所有的村庄中。为了建立邮局,应选择他们建造的位置,使每个村庄与其最近的邮局之间的距离总和最小。
你要编写一个程序,已知村庄的位置和邮局的数量,计算每个村庄和最近的邮局之间所有距离的最小可能的总和。
Solution
大概是把dp的常见优化的经典练习题都打了一波。
这是四边形不等式优化的题目。证明?百度百科上就很不错了,就不说了。
满足\(f[i][j]\) 的决策点会在\(f[i][j-1]\)和\(f[i+1][j]\)的决策点之间
Code
#include<bits/stdc++.h>
#define ll long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
}
#define MN 3005
#define mN 305
int V,P,a[MN],f[MN][mN],q[MN],d[MN][MN],g[MN][mN];
inline int dis(int l,int r)
{
if(d[l][r]) return d[l][r];
else return d[l][r]=q[r]+q[l-1]-q[(l+r)>>1]-q[(l+r-1)>>1];
}
int main()
{
V=read();P=read();
memset(f,0x3f,sizeof f);
register int i,j,k;
for(i=1;i<=V;++i) a[i]=read(),q[i]=q[i-1]+a[i];
std::sort(a+1,a+V+1);
for(i=1;i<=V;++i) f[i][1]=dis(1,i);
for(g[V+1][k=2]=V;k<=P;++k,g[V+1][k]=V)
for(i=V;i>=1;--i)for(j=g[i][k-1];j<=g[i+1][k];++j)
if(f[j][k-1]+dis(j+1,i)<f[i][k])
f[i][k]=f[j][k-1]+dis(j+1,i),g[i][k]=j;
return 0*printf("%d\n",f[V][P]);
}
Blog来自PaperCloud,未经允许,请勿转载,TKS!
luogu_P4767 [IOI2000]邮局的更多相关文章
- COGS 1507. [IOI2000]邮局
1507. [IOI2000]邮局 ★☆ 输入文件:postoffice.in 输出文件:postoffice.out 简单对比时间限制:1 s 内存限制:256 MB [题目描述] ...
- BZOJXXXX: [IOI2000]邮局——四边形不等式优化初探
貌似$BZOJ$上并没有这个题... 是嫌这个题水了么... 还是要氪金权限号??? 这里附上洛谷的题面:洛谷P4767 [IOI2000]邮局 题目描述 高速公路旁边有一些村庄.高速公路表示为整数轴 ...
- [IOI2000] 邮局
## 非常神仙的 wqs 二分优化dp,又学了一招. 首先我们需要先想到一个人类智慧版的前缀和优化. # part 1:violence 然鹅在前缀和优化之前我们先考虑暴力做法:我们可以枚举 i . ...
- 题解——洛谷P4767 [IOI2000]邮局(区间DP)
这题是一道区间DP 思维难度主要集中在如何预处理距离上 由生活经验得,邮局放在中间显然最优 所以我们可以递推求出\( w[i][j] \)表示i,j之间放一个邮局得距离 然后设出状态转移方程 设\( ...
- [LUOGU] P4767 [IOI2000]邮局
https://www.luogu.org/problemnew/show/P4767 四边形不等式好题! 可以设f[i][j]表示前i个村庄,建了j个邮局的最小代价. 转移:f[i][j]=min{ ...
- P4767 [IOI2000]邮局 - 平行四边形不等式优化DP
There is a straight highway with villages alongside the highway. The highway is represented as an in ...
- NOIP2018备考——DP专题练习
P4095 [HEOI2013]Eden 的新背包问题 P2657 [SCOI2009]windy数 P3413 SAC#1 - 萌数 P3205 [HNOI2010]合唱队 P476 ...
- DP的优化
参考资料: 李煜东<算法竞赛进阶指南> 斜率优化 形如: \(f[i] = min\{f[j]+val(i,j)\}\)的dp,多项式\(val(i,j)\)包含\(i,j\)的乘积项 引 ...
- 我的刷题单(8/37)(dalao珂来享受切题的快感
P2324 [SCOI2005]骑士精神 CF724B Batch Sort CF460C Present CF482A Diverse Permutation CF425A Sereja and S ...
随机推荐
- Effective Java 读书笔记(四):泛型
1 不要使用原始类型 (1)术语 术语 例子 参数化类型(Parameterized type) List<String> 实际类型参数(Actual type parameter) St ...
- 关于/var/log/maillog 时间和系统时间不对应的问题 -- 我出现的是日志时间比系统时间慢12个小时
那么让我们来见证奇迹的时刻吧!! 首先你要看下/etc/localtime的软连接,到哪了 一般就是这块出问题了 检查这里就绝对不会错的 对比图 : 这种情况, 删除/etc/localtime : ...
- Hystrix 熔断器
Hystrix 是Netflix开源的一个延迟和容错库,用于隔离访问远程服务,防止出现级联失败 一.Hystrix 的定义 二.Hystrix 的原理 在分布式式系统中应用熔断器后,服务调用方可以自己 ...
- QSqlDatabase数据库
#include <QSqlDatabase> #include <QtDebug> #include <QSqlQuery> #include <QSqlE ...
- Android NDK 学习之在C中调用Java的变量和静态变量
本博客主要是在Ubuntu 下开发,且默认你已经安装了Eclipse,Android SDK, Android NDK, CDT插件. 在Eclipse中添加配置NDK,路径如下Eclipse-> ...
- 元组和range
元组 只读列表,不支持增 删 改:但是元组里的列表可以增删改 元组其实就是通过逗号(,)设定的,和小括号并没有什么必然的关系,所以当元组只有一个元素的时候,需要在元素后加个逗号 存储大量数据,有序.不 ...
- Spark foreachpartiton和mappartition的异同
相同 都是对分区进行操作 不同 1.foreachpartition是Action操作,mappartition是Transformation操作 2.foreachpartition无返回值,map ...
- {RuntimeError} An attempt has been made to start a new process before the current process has finished its bootstrapping phase.This probably means that you are not using fork to start your child...
加载数据时出现报错: RuntimeError: An attempt has been made to start a new process before the c ...
- OAuth2在微服务架构中的应用
首先是为什么要在微服务场景使用OAuth2,这是因为使用了OAuth2后,就能向第三方系统提供授权. 其次是如何使用,见下图: 在微服务架构中使用OAuth2,有几个问题需要我们思考: 1. toke ...
- 用 Redis 实现延时任务
原文:https://cloud.tencent.com/developer/article/1358266 1.什么是延时任务 延时任务,顾名思义,就是延迟一段时间后才执行的任务.延时任务的使用还是 ...