/*
HDU 6035 - Colorful Tree [ DFS,分块 ]
题意:
n个节点的树,每个节点有一种颜色(1~n),一条路径的权值是这条路上不同的颜色的数量,问所有路径(n*(n-1)/2条) 权值之和是多少?
分析:
考虑单种颜色,这种颜色的贡献是 至少经过一次这种颜色的路径数 = 总路径数(n*(n-1)/2) - 没有经过这种颜色的路径数
求没有经过这种颜色的路径数,即这种颜色的点将整棵树分块,每个分块中的总路径数
*/
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const int N = 200005;
struct Edge {
int to, next;
}edge[N<<1];
int tot, head[N];
void init() {
memset(head, -1, sizeof(head));
tot = 0;
}
void addedge(int u, int v) {
edge[tot].to = v; edge[tot].next = head[u];
head[u] = tot++;
}
int n;
int c[N], last[N], rem[N], cut[N];
LL ans;
LL sum2(LL x) {
return x*(x-1)/2;
}
int dfs(int u, int pre)
{
int su = 1, fa = last[c[u]];
last[c[u]] = u;
for (int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if (v == pre) continue;
cut[u] = 0;
int sv = dfs(v, u);
su += sv;
ans -= sum2(sv-cut[u]);
}
(fa ? cut[fa] : rem[c[u]]) += su;
last[c[u]] = fa;
return su;
}
int main()
{
int tt = 0;
while (~scanf("%d", &n))
{
init();
for (int i = 1; i <= n; i++) scanf("%d", &c[i]);
for (int i = 1; i < n; i++)
{
int x, y; scanf("%d%d", &x, &y);
addedge(x, y); addedge(y, x);
}
memset(last, 0, sizeof(last));
memset(cut, 0, sizeof(cut));
memset(rem, 0, sizeof(rem));
ans = n*sum2(n);
dfs(1, 1);
for (int i = 1; i <= n; i++)
ans -= sum2(n-rem[i]);
printf("Case #%d: %lld\n", ++tt, ans);
}
}
//----------------------------------------------------------------------
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const int N = 200005;
vector<int> c[N], G[N];
int n;
int L[N], R[N], s[N], f[N];
void dfs(int u, int pre, int&& ncnt)
{
f[u] = pre;
L[u] = ++ncnt;
s[u] = 1;
for (auto& v : G[u])
{
if (v == pre) continue;
dfs(v, u, move(ncnt));
s[u] += s[v];
}
R[u] = ncnt;
}
bool cmp(int a, int b) {
return L[a] < L[b];
}
int main()
{
int tt = 0;
while (~scanf("%d", &n))
{
for (int i = 0; i <= n; i++) c[i].clear(), G[i].clear();
for (int i = 1; i <= n; i++)
{
int x; scanf("%d", &x);
c[x].push_back(i);
}
for (int i = 1; i < n; i++)
{
int x, y; scanf("%d%d", &x, &y);
G[x].push_back(y);
G[y].push_back(x);
}
G[0].push_back(1);
dfs(0, 0, 0);
LL ans = (LL)n * n * (n-1)/2;
for (int i = 1; i <= n; i++)
{
if (c[i].empty()) {
ans -= (LL)n*(n-1)/2;
continue;
}
c[i].push_back(0);
sort(c[i].begin(), c[i].end(), cmp);
for (auto& x : c[i])
for (auto& y : G[x])
{
if (y == f[x]) continue;
int size = s[y];
int k = L[y];
while (1)
{
L[n+1] = k;
auto it = lower_bound(c[i].begin(), c[i].end(), n+1, cmp);
if (it == c[i].end() || L[*it] > R[y]) break;
size -= s[*it];
k = R[*it]+1;
}
ans -= (LL)size * (size-1)/2;
}
}
printf("Case #%d: %lld\n", ++tt, ans);
}
}

  

HDU 6035 - Colorful Tree | 2017 Multi-University Training Contest 1的更多相关文章

  1. hdu 6035:Colorful Tree (2017 多校第一场 1003) 【树形dp】

    题目链接 单独考虑每一种颜色,答案就是对于每种颜色至少经过一次这种的路径条数之和.反过来思考只需要求有多少条路径没有经过这种颜色即可. 具体实现过程比较复杂,很神奇的一个树形dp,下面给出一个含较详细 ...

  2. 2017 Multi-University Training Contest - Team 1 1003&&HDU 6035 Colorful Tree【树形dp】

    Colorful Tree Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  3. HDU 6035 Colorful Tree(补集思想+树形DP)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6035 [题目大意] 给出一颗树,一条路径的价值为其上点权的种类数,求路径总价值 [题解] 单独考虑 ...

  4. HDU 6035 Colorful Tree (树形DP)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6035 [题目大意] 给出一颗树,一条路径的价值为其上点权的种类数,求路径总价值 [题解] 我们计算 ...

  5. 2017ACM暑期多校联合训练 - Team 1 1003 HDU 6035 Colorful Tree (dfs)

    题目链接 Problem Description There is a tree with n nodes, each of which has a type of color represented ...

  6. HDU 6035 Colorful Tree(dfs)

    题意:一棵有n个点的树,树上每个点都有颜色c[i],定义每条路径的值为这条路径上经过的不同颜色数量和.求所有路径的值的和. 可以把问题转化为对每种颜色有多少条不同的路径至少经过这种颜色的点,然后加和. ...

  7. hdu 6035 Colorful Tree(虚树)

    考虑到树上操作:首先题目要我们求每条路径上出现不同颜色的数量,并把所有加起来得到答案:我们知道俩俩点之间会形成一条路径,所以我们可以知道每个样例的总的路径的数目为:n*(n-1)/2: 这样单单的求, ...

  8. HDU 6170 - Two strings | 2017 ZJUT Multi-University Training 9

    /* HDU 6170 - Two strings [ DP ] | 2017 ZJUT Multi-University Training 9 题意: 定义*可以匹配任意长度,.可以匹配任意字符,问 ...

  9. hdu 6301 Distinct Values (2018 Multi-University Training Contest 1 1004)

    Distinct Values Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

随机推荐

  1. serverlet声明周期

    servlet生命周期 被创建:默认情况下,当servlet第一次被访问时,由服务器创建该对象,调用init()初始化方法,一个servlet只会被创建一次. 可以配置servlet让其他服务器启动时 ...

  2. nginx 报错:[crit] 12456#0: *5 SSL_do_handshake() failed (SSL: error:1408A0A0:SSL routines:SSL3_GET_CLIENT_HELLO

    解决方法: 将配置 listen ssl; 更换为: listen ; ssl on; 从版本1.15.0开始,ssl on; 指令被废弃,使用 listen 443 ssl; 代替. 具体查看官网: ...

  3. SQLSERVER 去除字符串中特殊字符

    原文:SQLSERVER 去除字符串中特殊字符 /*========================================================================== ...

  4. 使用Minikube运行一个本地单节点Kubernetes集群

    使用Minikube是运行Kubernetes集群最简单.最快捷的途径,Minikube是一个构建单节点集群的工具,对于测试Kubernetes和本地开发应用都非常有用. ⒈安装Minikube Mi ...

  5. PAT A1011 World Cup Betting(20)

    AC代码 #include <cstdio> #include <algorithm> const int max_n = 3; using namespace std; /* ...

  6. logid让你的请求完整可追溯

    今天是在博客园开园的第一天 一时间其实并不能想起来到底该写什么文章,其实想写的东西挺多 今天就以logid这个主题开始吧,网上写这个的文章似乎不多,但是的确是在实际生产中相当重要的一个能力,也是容易被 ...

  7. 从入门到自闭之Python--MySQL数据库的多表查询

    多表查询 连表: 内连接:所有不在条件匹配内的数据们都会被剔除连表 select * from 表名1,表名2 where 条件; select * from 表名1 inner join 表名2 o ...

  8. django进阶版3

    hello... cookie与session 为什么会有cookie和session? 由于http协议是无状态的 无法记住用户是谁 cookie cookie是保存在客户端浏览器上的键值对 是服务 ...

  9. 【web性能优化】当用户输入网址后发生了什么?

    简单叙述 这个过程可以大致分为两个部分:网络通信和页面渲染. 一.网络通信 互联网内各网络设备间的通信都遵循TCP/IP协议,利用TCP/IP协议族进行网络通信时,会通过分层顺序与对方进行通信.分层由 ...

  10. C++ const关键字以及static关键字

    const可以用来修饰类中的成员函数以及成员变量以及类的对象 1.const修饰成员函数: 该函数是只读函数,不允许修改任何成员变量,但是可以使用类中的任何成员变量: 不允许修改任何非static的类 ...