AVL树(二)之 C++的实现
概要
上一章通过C语言实现了AVL树,本章将介绍AVL树的C++版本,算法与C语言版本的一样。
目录
1. AVL树的介绍
2. AVL树的C++实现
3. AVL树的C++测试程序
转载请注明出处:http://www.cnblogs.com/skywang12345/p/3577360.html
更多内容: 数据结构与算法系列 目录
(01) AVL树(一)之 图文解析 和 C语言的实现
(02) AVL树(二)之 C++的实现
(03) AVL树(三)之 Java的实现
AVL树的介绍
AVL树是高度平衡的而二叉树。它的特点是:AVL树中任何节点的两个子树的高度最大差别为1。
上面的两张图片,左边的是AVL树,它的任何节点的两个子树的高度差别都<=1;而右边的不是AVL树,因为7的两颗子树的高度相差为2(以2为根节点的树的高度是3,而以8为根节点的树的高度是1)。
AVL树的C++实现
1. 节点
1.1 AVL树节点
template <class T>
class AVLTreeNode{
public:
T key; // 关键字(键值)
int height; // 高度
AVLTreeNode *left; // 左孩子
AVLTreeNode *right; // 右孩子 AVLTreeNode(T value, AVLTreeNode *l, AVLTreeNode *r):
key(value), height(),left(l),right(r) {}
};
AVLTreeNode是AVL树的节点类,它包括的几个组成对象:
(01) key -- 是关键字,是用来对AVL树的节点进行排序的。
(02) left -- 是左孩子。
(03) right -- 是右孩子。
(04) height -- 是高度。
1.2 AVL树
template <class T>
class AVLTree {
private:
AVLTreeNode<T> *mRoot; // 根结点 public:
AVLTree();
~AVLTree(); // 获取树的高度
int height();
// 获取树的高度
int max(int a, int b); // 前序遍历"AVL树"
void preOrder();
// 中序遍历"AVL树"
void inOrder();
// 后序遍历"AVL树"
void postOrder(); // (递归实现)查找"AVL树"中键值为key的节点
AVLTreeNode<T>* search(T key);
// (非递归实现)查找"AVL树"中键值为key的节点
AVLTreeNode<T>* iterativeSearch(T key); // 查找最小结点:返回最小结点的键值。
T minimum();
// 查找最大结点:返回最大结点的键值。
T maximum(); // 将结点(key为节点键值)插入到AVL树中
void insert(T key); // 删除结点(key为节点键值)
void remove(T key); // 销毁AVL树
void destroy(); // 打印AVL树
void print();
private:
// 获取树的高度
int height(AVLTreeNode<T>* tree) ; // 前序遍历"AVL树"
void preOrder(AVLTreeNode<T>* tree) const;
// 中序遍历"AVL树"
void inOrder(AVLTreeNode<T>* tree) const;
// 后序遍历"AVL树"
void postOrder(AVLTreeNode<T>* tree) const; // (递归实现)查找"AVL树x"中键值为key的节点
AVLTreeNode<T>* search(AVLTreeNode<T>* x, T key) const;
// (非递归实现)查找"AVL树x"中键值为key的节点
AVLTreeNode<T>* iterativeSearch(AVLTreeNode<T>* x, T key) const; // 查找最小结点:返回tree为根结点的AVL树的最小结点。
AVLTreeNode<T>* minimum(AVLTreeNode<T>* tree);
// 查找最大结点:返回tree为根结点的AVL树的最大结点。
AVLTreeNode<T>* maximum(AVLTreeNode<T>* tree); // LL:左左对应的情况(左单旋转)。
AVLTreeNode<T>* leftLeftRotation(AVLTreeNode<T>* k2); // RR:右右对应的情况(右单旋转)。
AVLTreeNode<T>* rightRightRotation(AVLTreeNode<T>* k1); // LR:左右对应的情况(左双旋转)。
AVLTreeNode<T>* leftRightRotation(AVLTreeNode<T>* k3); // RL:右左对应的情况(右双旋转)。
AVLTreeNode<T>* rightLeftRotation(AVLTreeNode<T>* k1); // 将结点(z)插入到AVL树(tree)中
AVLTreeNode<T>* insert(AVLTreeNode<T>* &tree, T key); // 删除AVL树(tree)中的结点(z),并返回被删除的结点
AVLTreeNode<T>* remove(AVLTreeNode<T>* &tree, AVLTreeNode<T>* z); // 销毁AVL树
void destroy(AVLTreeNode<T>* &tree); // 打印AVL树
void print(AVLTreeNode<T>* tree, T key, int direction);
};
AVLTree是AVL树对应的类。它包含AVL树的根节点mRoot和AVL树的基本操作接口。需要说明的是:AVLTree中重载了许多函数。重载的目的是区分内部接口和外部接口,例如insert()函数而言,insert(tree, key)是内部接口,而insert(key)是外部接口。
1.2 树的高度
/*
* 获取树的高度
*/
template <class T>
int AVLTree<T>::height(AVLTreeNode<T>* tree)
{
if (tree != NULL)
return tree->height; return 0;
} template <class T>
int AVLTree<T>::height()
{
return height(mRoot);
}
关于高度,有的地方将"空二叉树的高度是-1",而本文采用维基百科上的定义:树的高度为最大层次。即空的二叉树的高度是0,非空树的高度等于它的最大层次(根的层次为1,根的子节点为第2层,依次类推)。
1.3 比较大小
/*
* 比较两个值的大小
*/
template <class T>
int AVLTree<T>::max(int a, int b)
{
return a>b ? a : b;
}
2. 旋转
如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡。这种失去平衡的可以概括为4种姿态:LL(左左),LR(左右),RR(右右)和RL(右左)。下面给出它们的示意图:
上图中的4棵树都是"失去平衡的AVL树",从左往右的情况依次是:LL、LR、RL、RR。除了上面的情况之外,还有其它的失去平衡的AVL树,如下图:
上面的两张图都是为了便于理解,而列举的关于"失去平衡的AVL树"的例子。总的来说,AVL树失去平衡时的情况一定是LL、LR、RL、RR这4种之一,它们都由各自的定义:
(1) LL:LeftLeft,也称为"左左"。插入或删除一个节点后,根节点的左子树的左子树还有非空子节点,导致"根的左子树的高度"比"根的右子树的高度"大2,导致AVL树失去了平衡。
例如,在上面LL情况中,由于"根节点(8)的左子树(4)的左子树(2)还有非空子节点",而"根节点(8)的右子树(12)没有子节点";导致"根节点(8)的左子树(4)高度"比"根节点(8)的右子树(12)"高2。
(2) LR:LeftRight,也称为"左右"。插入或删除一个节点后,根节点的左子树的右子树还有非空子节点,导致"根的左子树的高度"比"根的右子树的高度"大2,导致AVL树失去了平衡。
例如,在上面LR情况中,由于"根节点(8)的左子树(4)的左子树(6)还有非空子节点",而"根节点(8)的右子树(12)没有子节点";导致"根节点(8)的左子树(4)高度"比"根节点(8)的右子树(12)"高2。
(3) RL:RightLeft,称为"右左"。插入或删除一个节点后,根节点的右子树的左子树还有非空子节点,导致"根的右子树的高度"比"根的左子树的高度"大2,导致AVL树失去了平衡。
例如,在上面RL情况中,由于"根节点(8)的右子树(12)的左子树(10)还有非空子节点",而"根节点(8)的左子树(4)没有子节点";导致"根节点(8)的右子树(12)高度"比"根节点(8)的左子树(4)"高2。
(4) RR:RightRight,称为"右右"。插入或删除一个节点后,根节点的右子树的右子树还有非空子节点,导致"根的右子树的高度"比"根的左子树的高度"大2,导致AVL树失去了平衡。
例如,在上面RR情况中,由于"根节点(8)的右子树(12)的右子树(14)还有非空子节点",而"根节点(8)的左子树(4)没有子节点";导致"根节点(8)的右子树(12)高度"比"根节点(8)的左子树(4)"高2。
前面说过,如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡。AVL失去平衡之后,可以通过旋转使其恢复平衡,下面分别介绍"LL(左左),LR(左右),RR(右右)和RL(右左)"这4种情况对应的旋转方法。
2.1 LL的旋转
LL失去平衡的情况,可以通过一次旋转让AVL树恢复平衡。如下图:
图中左边是旋转之前的树,右边是旋转之后的树。从中可以发现,旋转之后的树又变成了AVL树,而且该旋转只需要一次即可完成。
对于LL旋转,你可以这样理解为:LL旋转是围绕"失去平衡的AVL根节点"进行的,也就是节点k2;而且由于是LL情况,即左左情况,就用手抓着"左孩子,即k1"使劲摇。将k1变成根节点,k2变成k1的右子树,"k1的右子树"变成"k2的左子树"。
LL的旋转代码
/*
* LL:左左对应的情况(左单旋转)。
*
* 返回值:旋转后的根节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::leftLeftRotation(AVLTreeNode<T>* k2)
{
AVLTreeNode<T>* k1; k1 = k2->left;
k2->left = k1->right;
k1->right = k2; k2->height = max( height(k2->left), height(k2->right)) + ;
k1->height = max( height(k1->left), k2->height) + ; return k1;
}
2.2 RR的旋转
理解了LL之后,RR就相当容易理解了。RR是与LL对称的情况!RR恢复平衡的旋转方法如下:
图中左边是旋转之前的树,右边是旋转之后的树。RR旋转也只需要一次即可完成。
RR的旋转代码
/*
* RR:右右对应的情况(右单旋转)。
*
* 返回值:旋转后的根节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::rightRightRotation(AVLTreeNode<T>* k1)
{
AVLTreeNode<T>* k2; k2 = k1->right;
k1->right = k2->left;
k2->left = k1; k1->height = max( height(k1->left), height(k1->right)) + ;
k2->height = max( height(k2->right), k1->height) + ; return k2;
}
2.3 LR的旋转
LR失去平衡的情况,需要经过两次旋转才能让AVL树恢复平衡。如下图:
第一次旋转是围绕"k1"进行的"RR旋转",第二次是围绕"k3"进行的"LL旋转"。
LR的旋转代码
/*
* LR:左右对应的情况(左双旋转)。
*
* 返回值:旋转后的根节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::leftRightRotation(AVLTreeNode<T>* k3)
{
k3->left = rightRightRotation(k3->left); return leftLeftRotation(k3);
}
2.4 RL的旋转
RL是与LR的对称情况!RL恢复平衡的旋转方法如下:
第一次旋转是围绕"k3"进行的"LL旋转",第二次是围绕"k1"进行的"RR旋转"。
RL的旋转代码
/*
* RL:右左对应的情况(右双旋转)。
*
* 返回值:旋转后的根节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::rightLeftRotation(AVLTreeNode<T>* k1)
{
k1->right = leftLeftRotation(k1->right); return rightRightRotation(k1);
}
3. 插入
插入节点的代码
/*
* 将结点插入到AVL树中,并返回根节点
*
* 参数说明:
* tree AVL树的根结点
* key 插入的结点的键值
* 返回值:
* 根节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::insert(AVLTreeNode<T>* &tree, T key)
{
if (tree == NULL)
{
// 新建节点
tree = new AVLTreeNode<T>(key, NULL, NULL);
if (tree==NULL)
{
cout << "ERROR: create avltree node failed!" << endl;
return NULL;
}
}
else if (key < tree->key) // 应该将key插入到"tree的左子树"的情况
{
tree->left = insert(tree->left, key);
// 插入节点后,若AVL树失去平衡,则进行相应的调节。
if (height(tree->left) - height(tree->right) == )
{
if (key < tree->left->key)
tree = leftLeftRotation(tree);
else
tree = leftRightRotation(tree);
}
}
else if (key > tree->key) // 应该将key插入到"tree的右子树"的情况
{
tree->right = insert(tree->right, key);
// 插入节点后,若AVL树失去平衡,则进行相应的调节。
if (height(tree->right) - height(tree->left) == )
{
if (key > tree->right->key)
tree = rightRightRotation(tree);
else
tree = rightLeftRotation(tree);
}
}
else //key == tree->key)
{
cout << "添加失败:不允许添加相同的节点!" << endl;
} tree->height = max( height(tree->left), height(tree->right)) + ; return tree;
} template <class T>
void AVLTree<T>::insert(T key)
{
insert(mRoot, key);
}
4. 删除
删除节点的代码
/*
* 删除结点(z),返回根节点
*
* 参数说明:
* tree AVL树的根结点
* z 待删除的结点
* 返回值:
* 根节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::remove(AVLTreeNode<T>* &tree, AVLTreeNode<T>* z)
{
// 根为空 或者 没有要删除的节点,直接返回NULL。
if (tree==NULL || z==NULL)
return NULL; if (z->key < tree->key) // 待删除的节点在"tree的左子树"中
{
tree->left = remove(tree->left, z);
// 删除节点后,若AVL树失去平衡,则进行相应的调节。
if (height(tree->right) - height(tree->left) == )
{
AVLTreeNode<T> *r = tree->right;
if (height(r->left) > height(r->right))
tree = rightLeftRotation(tree);
else
tree = rightRightRotation(tree);
}
}
else if (z->key > tree->key)// 待删除的节点在"tree的右子树"中
{
tree->right = remove(tree->right, z);
// 删除节点后,若AVL树失去平衡,则进行相应的调节。
if (height(tree->left) - height(tree->right) == )
{
AVLTreeNode<T> *l = tree->left;
if (height(l->right) > height(l->left))
tree = leftRightRotation(tree);
else
tree = leftLeftRotation(tree);
}
}
else // tree是对应要删除的节点。
{
// tree的左右孩子都非空
if ((tree->left!=NULL) && (tree->right!=NULL))
{
if (height(tree->left) > height(tree->right))
{
// 如果tree的左子树比右子树高;
// 则(01)找出tree的左子树中的最大节点
// (02)将该最大节点的值赋值给tree。
// (03)删除该最大节点。
// 这类似于用"tree的左子树中最大节点"做"tree"的替身;
// 采用这种方式的好处是:删除"tree的左子树中最大节点"之后,AVL树仍然是平衡的。
AVLTreeNode<T>* max = maximum(tree->left);
tree->key = max->key;
tree->left = remove(tree->left, max);
}
else
{
// 如果tree的左子树不比右子树高(即它们相等,或右子树比左子树高1)
// 则(01)找出tree的右子树中的最小节点
// (02)将该最小节点的值赋值给tree。
// (03)删除该最小节点。
// 这类似于用"tree的右子树中最小节点"做"tree"的替身;
// 采用这种方式的好处是:删除"tree的右子树中最小节点"之后,AVL树仍然是平衡的。
AVLTreeNode<T>* min = maximum(tree->right);
tree->key = min->key;
tree->right = remove(tree->right, min);
}
}
else
{
AVLTreeNode<T>* tmp = tree;
tree = (tree->left!=NULL) ? tree->left : tree->right;
delete tmp;
}
} return tree;
} template <class T>
void AVLTree<T>::remove(T key)
{
AVLTreeNode<T>* z; if ((z = search(mRoot, key)) != NULL)
mRoot = remove(mRoot, z);
}
注意:关于AVL树的"前序遍历"、"中序遍历"、"后序遍历"、"最大值"、"最小值"、"查找"、"打印"、"销毁"等接口与"二叉查找树"基本一样,这些操作在"二叉查找树"中已经介绍过了,这里就不再单独介绍了。当然,后文给出的AVL树的完整源码中,有给出这些API的实现代码。这些接口很简单,Please RTFSC(Read The Fucking Source Code)!
完整的实现代码
AVL树的实现文件(AVRTree.h)
#ifndef _AVL_TREE_HPP_
#define _AVL_TREE_HPP_ #include <iomanip>
#include <iostream>
using namespace std; template <class T>
class AVLTreeNode{
public:
T key; // 关键字(键值)
int height; // 高度
AVLTreeNode *left; // 左孩子
AVLTreeNode *right; // 右孩子 AVLTreeNode(T value, AVLTreeNode *l, AVLTreeNode *r):
key(value), height(),left(l),right(r) {}
}; template <class T>
class AVLTree {
private:
AVLTreeNode<T> *mRoot; // 根结点 public:
AVLTree();
~AVLTree(); // 获取树的高度
int height();
// 获取树的高度
int max(int a, int b); // 前序遍历"AVL树"
void preOrder();
// 中序遍历"AVL树"
void inOrder();
// 后序遍历"AVL树"
void postOrder(); // (递归实现)查找"AVL树"中键值为key的节点
AVLTreeNode<T>* search(T key);
// (非递归实现)查找"AVL树"中键值为key的节点
AVLTreeNode<T>* iterativeSearch(T key); // 查找最小结点:返回最小结点的键值。
T minimum();
// 查找最大结点:返回最大结点的键值。
T maximum(); // 将结点(key为节点键值)插入到AVL树中
void insert(T key); // 删除结点(key为节点键值)
void remove(T key); // 销毁AVL树
void destroy(); // 打印AVL树
void print();
private:
// 获取树的高度
int height(AVLTreeNode<T>* tree) ; // 前序遍历"AVL树"
void preOrder(AVLTreeNode<T>* tree) const;
// 中序遍历"AVL树"
void inOrder(AVLTreeNode<T>* tree) const;
// 后序遍历"AVL树"
void postOrder(AVLTreeNode<T>* tree) const; // (递归实现)查找"AVL树x"中键值为key的节点
AVLTreeNode<T>* search(AVLTreeNode<T>* x, T key) const;
// (非递归实现)查找"AVL树x"中键值为key的节点
AVLTreeNode<T>* iterativeSearch(AVLTreeNode<T>* x, T key) const; // 查找最小结点:返回tree为根结点的AVL树的最小结点。
AVLTreeNode<T>* minimum(AVLTreeNode<T>* tree);
// 查找最大结点:返回tree为根结点的AVL树的最大结点。
AVLTreeNode<T>* maximum(AVLTreeNode<T>* tree); // LL:左左对应的情况(左单旋转)。
AVLTreeNode<T>* leftLeftRotation(AVLTreeNode<T>* k2); // RR:右右对应的情况(右单旋转)。
AVLTreeNode<T>* rightRightRotation(AVLTreeNode<T>* k1); // LR:左右对应的情况(左双旋转)。
AVLTreeNode<T>* leftRightRotation(AVLTreeNode<T>* k3); // RL:右左对应的情况(右双旋转)。
AVLTreeNode<T>* rightLeftRotation(AVLTreeNode<T>* k1); // 将结点(z)插入到AVL树(tree)中
AVLTreeNode<T>* insert(AVLTreeNode<T>* &tree, T key); // 删除AVL树(tree)中的结点(z),并返回被删除的结点
AVLTreeNode<T>* remove(AVLTreeNode<T>* &tree, AVLTreeNode<T>* z); // 销毁AVL树
void destroy(AVLTreeNode<T>* &tree); // 打印AVL树
void print(AVLTreeNode<T>* tree, T key, int direction);
}; /*
* 构造函数
*/
template <class T>
AVLTree<T>::AVLTree():mRoot(NULL)
{
} /*
* 析构函数
*/
template <class T>
AVLTree<T>::~AVLTree()
{
destroy(mRoot);
} /*
* 获取树的高度
*/
template <class T>
int AVLTree<T>::height(AVLTreeNode<T>* tree)
{
if (tree != NULL)
return tree->height; return ;
} template <class T>
int AVLTree<T>::height()
{
return height(mRoot);
}
/*
* 比较两个值的大小
*/
template <class T>
int AVLTree<T>::max(int a, int b)
{
return a>b ? a : b;
} /*
* 前序遍历"AVL树"
*/
template <class T>
void AVLTree<T>::preOrder(AVLTreeNode<T>* tree) const
{
if(tree != NULL)
{
cout<< tree->key << " " ;
preOrder(tree->left);
preOrder(tree->right);
}
} template <class T>
void AVLTree<T>::preOrder()
{
preOrder(mRoot);
} /*
* 中序遍历"AVL树"
*/
template <class T>
void AVLTree<T>::inOrder(AVLTreeNode<T>* tree) const
{
if(tree != NULL)
{
inOrder(tree->left);
cout<< tree->key << " " ;
inOrder(tree->right);
}
} template <class T>
void AVLTree<T>::inOrder()
{
inOrder(mRoot);
} /*
* 后序遍历"AVL树"
*/
template <class T>
void AVLTree<T>::postOrder(AVLTreeNode<T>* tree) const
{
if(tree != NULL)
{
postOrder(tree->left);
postOrder(tree->right);
cout<< tree->key << " " ;
}
} template <class T>
void AVLTree<T>::postOrder()
{
postOrder(mRoot);
} /*
* (递归实现)查找"AVL树x"中键值为key的节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::search(AVLTreeNode<T>* x, T key) const
{
if (x==NULL || x->key==key)
return x; if (key < x->key)
return search(x->left, key);
else
return search(x->right, key);
} template <class T>
AVLTreeNode<T>* AVLTree<T>::search(T key)
{
return search(mRoot, key);
} /*
* (非递归实现)查找"AVL树x"中键值为key的节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::iterativeSearch(AVLTreeNode<T>* x, T key) const
{
while ((x!=NULL) && (x->key!=key))
{
if (key < x->key)
x = x->left;
else
x = x->right;
} return x;
} template <class T>
AVLTreeNode<T>* AVLTree<T>::iterativeSearch(T key)
{
return iterativeSearch(mRoot, key);
} /*
* 查找最小结点:返回tree为根结点的AVL树的最小结点。
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::minimum(AVLTreeNode<T>* tree)
{
if (tree == NULL)
return NULL; while(tree->left != NULL)
tree = tree->left;
return tree;
} template <class T>
T AVLTree<T>::minimum()
{
AVLTreeNode<T> *p = minimum(mRoot);
if (p != NULL)
return p->key; return (T)NULL;
} /*
* 查找最大结点:返回tree为根结点的AVL树的最大结点。
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::maximum(AVLTreeNode<T>* tree)
{
if (tree == NULL)
return NULL; while(tree->right != NULL)
tree = tree->right;
return tree;
} template <class T>
T AVLTree<T>::maximum()
{
AVLTreeNode<T> *p = maximum(mRoot);
if (p != NULL)
return p->key; return (T)NULL;
} /*
* LL:左左对应的情况(左单旋转)。
*
* 返回值:旋转后的根节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::leftLeftRotation(AVLTreeNode<T>* k2)
{
AVLTreeNode<T>* k1; k1 = k2->left;
k2->left = k1->right;
k1->right = k2; k2->height = max( height(k2->left), height(k2->right)) + ;
k1->height = max( height(k1->left), k2->height) + ; return k1;
} /*
* RR:右右对应的情况(右单旋转)。
*
* 返回值:旋转后的根节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::rightRightRotation(AVLTreeNode<T>* k1)
{
AVLTreeNode<T>* k2; k2 = k1->right;
k1->right = k2->left;
k2->left = k1; k1->height = max( height(k1->left), height(k1->right)) + ;
k2->height = max( height(k2->right), k1->height) + ; return k2;
} /*
* LR:左右对应的情况(左双旋转)。
*
* 返回值:旋转后的根节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::leftRightRotation(AVLTreeNode<T>* k3)
{
k3->left = rightRightRotation(k3->left); return leftLeftRotation(k3);
} /*
* RL:右左对应的情况(右双旋转)。
*
* 返回值:旋转后的根节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::rightLeftRotation(AVLTreeNode<T>* k1)
{
k1->right = leftLeftRotation(k1->right); return rightRightRotation(k1);
} /*
* 将结点插入到AVL树中,并返回根节点
*
* 参数说明:
* tree AVL树的根结点
* key 插入的结点的键值
* 返回值:
* 根节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::insert(AVLTreeNode<T>* &tree, T key)
{
if (tree == NULL)
{
// 新建节点
tree = new AVLTreeNode<T>(key, NULL, NULL);
if (tree==NULL)
{
cout << "ERROR: create avltree node failed!" << endl;
return NULL;
}
}
else if (key < tree->key) // 应该将key插入到"tree的左子树"的情况
{
tree->left = insert(tree->left, key);
// 插入节点后,若AVL树失去平衡,则进行相应的调节。
if (height(tree->left) - height(tree->right) == )
{
if (key < tree->left->key)
tree = leftLeftRotation(tree);
else
tree = leftRightRotation(tree);
}
}
else if (key > tree->key) // 应该将key插入到"tree的右子树"的情况
{
tree->right = insert(tree->right, key);
// 插入节点后,若AVL树失去平衡,则进行相应的调节。
if (height(tree->right) - height(tree->left) == )
{
if (key > tree->right->key)
tree = rightRightRotation(tree);
else
tree = rightLeftRotation(tree);
}
}
else //key == tree->key)
{
cout << "添加失败:不允许添加相同的节点!" << endl;
} tree->height = max( height(tree->left), height(tree->right)) + ; return tree;
} template <class T>
void AVLTree<T>::insert(T key)
{
insert(mRoot, key);
} /*
* 删除结点(z),返回根节点
*
* 参数说明:
* tree AVL树的根结点
* z 待删除的结点
* 返回值:
* 根节点
*/
template <class T>
AVLTreeNode<T>* AVLTree<T>::remove(AVLTreeNode<T>* &tree, AVLTreeNode<T>* z)
{
// 根为空 或者 没有要删除的节点,直接返回NULL。
if (tree==NULL || z==NULL)
return NULL; if (z->key < tree->key) // 待删除的节点在"tree的左子树"中
{
tree->left = remove(tree->left, z);
// 删除节点后,若AVL树失去平衡,则进行相应的调节。
if (height(tree->right) - height(tree->left) == )
{
AVLTreeNode<T> *r = tree->right;
if (height(r->left) > height(r->right))
tree = rightLeftRotation(tree);
else
tree = rightRightRotation(tree);
}
}
else if (z->key > tree->key)// 待删除的节点在"tree的右子树"中
{
tree->right = remove(tree->right, z);
// 删除节点后,若AVL树失去平衡,则进行相应的调节。
if (height(tree->left) - height(tree->right) == )
{
AVLTreeNode<T> *l = tree->left;
if (height(l->right) > height(l->left))
tree = leftRightRotation(tree);
else
tree = leftLeftRotation(tree);
}
}
else // tree是对应要删除的节点。
{
// tree的左右孩子都非空
if ((tree->left!=NULL) && (tree->right!=NULL))
{
if (height(tree->left) > height(tree->right))
{
// 如果tree的左子树比右子树高;
// 则(01)找出tree的左子树中的最大节点
// (02)将该最大节点的值赋值给tree。
// (03)删除该最大节点。
// 这类似于用"tree的左子树中最大节点"做"tree"的替身;
// 采用这种方式的好处是:删除"tree的左子树中最大节点"之后,AVL树仍然是平衡的。
AVLTreeNode<T>* max = maximum(tree->left);
tree->key = max->key;
tree->left = remove(tree->left, max);
}
else
{
// 如果tree的左子树不比右子树高(即它们相等,或右子树比左子树高1)
// 则(01)找出tree的右子树中的最小节点
// (02)将该最小节点的值赋值给tree。
// (03)删除该最小节点。
// 这类似于用"tree的右子树中最小节点"做"tree"的替身;
// 采用这种方式的好处是:删除"tree的右子树中最小节点"之后,AVL树仍然是平衡的。
AVLTreeNode<T>* min = maximum(tree->right);
tree->key = min->key;
tree->right = remove(tree->right, min);
}
}
else
{
AVLTreeNode<T>* tmp = tree;
tree = (tree->left!=NULL) ? tree->left : tree->right;
delete tmp;
}
} return tree;
} template <class T>
void AVLTree<T>::remove(T key)
{
AVLTreeNode<T>* z; if ((z = search(mRoot, key)) != NULL)
mRoot = remove(mRoot, z);
} /*
* 销毁AVL树
*/
template <class T>
void AVLTree<T>::destroy(AVLTreeNode<T>* &tree)
{
if (tree==NULL)
return ; if (tree->left != NULL)
destroy(tree->left);
if (tree->right != NULL)
destroy(tree->right); delete tree;
} template <class T>
void AVLTree<T>::destroy()
{
destroy(mRoot);
} /*
* 打印"二叉查找树"
*
* key -- 节点的键值
* direction -- 0,表示该节点是根节点;
* -1,表示该节点是它的父结点的左孩子;
* 1,表示该节点是它的父结点的右孩子。
*/
template <class T>
void AVLTree<T>::print(AVLTreeNode<T>* tree, T key, int direction)
{
if(tree != NULL)
{
if(direction==) // tree是根节点
cout << setw() << tree->key << " is root" << endl;
else // tree是分支节点
cout << setw() << tree->key << " is " << setw() << key << "'s " << setw() << (direction==?"right child" : "left child") << endl; print(tree->left, tree->key, -);
print(tree->right,tree->key, );
}
} template <class T>
void AVLTree<T>::print()
{
if (mRoot != NULL)
print(mRoot, mRoot->key, );
}
#endif
AVL树的测试程序(AVLTreeTest.cpp)
/**
* C 语言: AVL树
*
* @author skywang
* @date 2013/11/07
*/ #include <iostream>
#include "AVLTree.h"
using namespace std; static int arr[]= {,,,,,,,,,,,,,,,};
#define TBL_SIZE(a) ( (sizeof(a)) / (sizeof(a[0])) ) int main()
{
int i,ilen;
AVLTree<int>* tree=new AVLTree<int>(); cout << "== 依次添加: ";
ilen = TBL_SIZE(arr);
for(i=; i<ilen; i++)
{
cout << arr[i] <<" ";
tree->insert(arr[i]);
} cout << "\n== 前序遍历: ";
tree->preOrder(); cout << "\n== 中序遍历: ";
tree->inOrder(); cout << "\n== 后序遍历: ";
tree->postOrder();
cout << endl; cout << "== 高度: " << tree->height() << endl;
cout << "== 最小值: " << tree->minimum() << endl;
cout << "== 最大值: " << tree->maximum() << endl;
cout << "== 树的详细信息: " << endl;
tree->print(); i = ;
cout << "\n== 删除根节点: " << i;
tree->remove(i); cout << "\n== 高度: " << tree->height() ;
cout << "\n== 中序遍历: " ;
tree->inOrder();
cout << "\n== 树的详细信息: " << endl;
tree->print(); // 销毁二叉树
tree->destroy(); return ;
}
AVL树的C++测试程序
AVL树的测试程序代码(AVLTreeTest.cpp)在前面已经给出。在测试程序中,首先新建一棵AVL树,然后依次添加"3,2,1,4,5,6,7,16,15,14,13,12,11,10,8,9" 到AVL树中;添加完毕之后,再将从AVL树中删除。AVL树的添加和删除过程如下图:
(01) 添加3,2
添加3,2都不会破坏AVL树的平衡性。
(02) 添加1
添加1之后,AVL树失去平衡(LL),此时需要对AVL树进行旋转(LL旋转)。旋转过程如下:
(03) 添加4
添加4不会破坏AVL树的平衡性。
(04) 添加5
添加5之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:
(05) 添加6
添加6之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:
(06) 添加7
添加7之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:
(07) 添加16
添加16不会破坏AVL树的平衡性。
(08) 添加15
添加15之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:
(09) 添加14
添加14之后,AVL树失去平衡(RL),此时需要对AVL树进行旋转(RL旋转)。旋转过程如下:
(10) 添加13
添加13之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。旋转过程如下:
(11) 添加12
添加12之后,AVL树失去平衡(LL),此时需要对AVL树进行旋转(LL旋转)。旋转过程如下:
(12) 添加11
添加11之后,AVL树失去平衡(LL),此时需要对AVL树进行旋转(LL旋转)。旋转过程如下:
(13) 添加10
添加10之后,AVL树失去平衡(LL),此时需要对AVL树进行旋转(LL旋转)。旋转过程如下:
(14) 添加8
添加8不会破坏AVL树的平衡性。
(15) 添加9
但是添加9之后,AVL树失去平衡(LR),此时需要对AVL树进行旋转(LR旋转)。旋转过程如下:
添加完所有数据之后,得到的AVL树如下:
接着,删除节点8.删除节点8并不会造成AVL树的不平衡,所以不需要旋转,操作示意图如下:
程序运行结果如下:
== 依次添加: 3 2 1 4 5 6 7 16 15 14 13 12 11 10 8 9
== 前序遍历: 7 4 2 1 3 6 5 13 11 9 8 10 12 15 14 16
== 中序遍历: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
== 后序遍历: 1 3 2 5 6 4 8 10 9 12 11 14 16 15 13 7
== 高度: 5
== 最小值: 1
== 最大值: 16
== 树的详细信息:
is root
is 7's left child
is 4's left child
is 2's left child
is 2's right child
is 4's right child
is 6's left child
is 7's right child
is 13's left child
is 11's left child
is 9's left child
is 9's right child
is 11's right child
is 13's right child
is 15's left child
is 15's right child == 删除根节点: 8
== 高度: 5
== 中序遍历: 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16
== 树的详细信息:
is root
is 7's left child
is 4's left child
is 2's left child
is 2's right child
is 4's right child
is 6's left child
is 7's right child
is 13's left child
is 11's left child
is 9's right child
is 11's right child
is 13's right child
is 15's left child
is 15's right child
AVL树(二)之 C++的实现的更多相关文章
- AVL树(二叉平衡树)详解与实现
AVL树概念 前面学习二叉查找树和二叉树的各种遍历,但是其查找效率不稳定(斜树),而二叉平衡树的用途更多.查找相比稳定很多.(欢迎关注数据结构专栏) AVL树是带有平衡条件的二叉查找树.这个平衡条件必 ...
- 数据结构之AVL树
AVL树是高度平衡的而二叉树.它的特点是:AVL树中任何节点的两个子树的高度最大差别为1. 旋转 如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡.这种失去平衡的可以概括为4种姿态:LL ...
- AVL树(三)之 Java的实现
概要 前面分别介绍了AVL树"C语言版本"和"C++版本",本章介绍AVL树的Java实现版本,它的算法与C语言和C++版本一样.内容包括:1. AVL树的介绍 ...
- AVL树(一)之 图文解析 和 C语言的实现
概要 本章介绍AVL树.和前面介绍"二叉查找树"的流程一样,本章先对AVL树的理论知识进行简单介绍,然后给出C语言的实现.本篇实现的二叉查找树是C语言版的,后面章节再分别给出C++ ...
- "《算法导论》之‘树’":AVL树
本文关于AVL树的介绍引自博文AVL树(二)之 C++的实现,与二叉查找树相同的部分则不作介绍直接引用:代码实现是在本文的基础上自己实现且继承自上一篇博文二叉查找树. 1.AVL树的介绍 AVL树是高 ...
- PAT树_层序遍历叶节点、中序建树后序输出、AVL树的根、二叉树路径存在性判定、奇妙的完全二叉搜索树、最小堆路径、文件路由
03-树1. List Leaves (25) Given a tree, you are supposed to list all the leaves in the order of top do ...
- (4) 二叉平衡树, AVL树
1.为什么要有平衡二叉树? 上一节我们讲了一般的二叉查找树, 其期望深度为O(log2n), 其各操作的时间复杂度O(log2n)同时也是由此决定的.但是在某些情况下(如在插入的序列是有序的时候), ...
- 高度平衡的二叉搜索树(AVL树)
AVL树的基本概念 AVL树是一种高度平衡的(height balanced)二叉搜索树:对每一个结点x,x的左子树与右子树的高度差(平衡因子)至多为1. 有人也许要问:为什么要有AVL树呢?它有什么 ...
- 二叉搜索树的平衡--AVL树和树的旋转(图解)
二叉搜索树只有保持平衡时其查找效率才会高. 要保持二叉搜索树的平衡不是一件易事.不过还是有一些非常经典的办法可以做到,其中最好的方法就是将二叉搜索树实现为AVL树. AVL树得名于它的发明者 G.M. ...
随机推荐
- MVC视图中处理Json
/// <summary> /// 登录 /// </summary> /// <param name="value"></param&g ...
- PHP之算法偶遇隨感
php真的很棒,很多函數把我們想要的功能都簡單實現了,是項目快速開發的首選.說實話,在BS程序開發方面我認為最好的兩種語言是PHP和JSP,我之前曾學過一段時間的java,確實很棒完全的OOP,但是它 ...
- mybatis connection error Cannot create PoolableConnectionFactory (Access denied for user 'root '@'local
org.mybatis.spring.MyBatisSystemException: nested exception is org.apache.ibatis.exceptions.Persiste ...
- 针对不同的Cookie做页面缓存
有时我们需要为PC浏览器及移动浏览器生成不同的页面,为了提高性能,不能每次请求都去判断User-Agent,通常用一个 Cookie 标记一下客户端是否是移动客户端,这样只需要读取这个 Cookie ...
- Python 内置彩蛋
The Zen of Python, by Tim Peters Beautiful is better than ugly.Explicit is better than implicit.Simp ...
- [Aaronyang]谈谈2015年AY对WPF全面技术总结40多篇WPF,炫到没朋友的AYUI来了
原著:AY WPF博客- 把wpf推广出去,让那些鄙视的人说不 大家好! 我是AY,首先声明,我在做一件很枯燥的事情,我是个91后程序员,每天熬夜完成计划的过着下班后的生活. 那天有 ...
- Quartz.Net 作业调度后台管理系统,基于Extjs
Quartz.Net是一个开源的.非常灵活的作业调度框架,具体使用方法和教程:http://www.cnblogs.com/shanyou/archive/2007/08/25/quartznettu ...
- dwz_bootstrap + thinkphp
http://www.thinkphp.cn/code/936.html 回去继续学习 SuperWebSocket
- [原创]android使用代码生成LayerDrawable的方法和注意事项
为了有更好的UI体验,一般我们会把button.textview等控件的背景设置上阴影.传统的做法是美工提供一张具有阴影效果的nine patch图,然后将其在xml文件中添加到background属 ...
- (笔记)Linux内核学习(七)之内核同步机制和实现方式
一 原子操作 指令以原子的方式执行——执行过程不被打断. 1 原子整数操作 原子操作函数接收的操作数类型——atomic_t //定义 atomic_t v;//初始化 atomic_t u = AT ...