python数字图像处理(8):对比度与亮度调整
图像亮度与对比度的调整,是放在skimage包的exposure模块里面
1、gamma调整
原理:I=Ig
对原图像的像素,进行幂运算,得到新的像素值。公式中的g就是gamma值。
如果gamma>1, 新图像比原图像暗
如果gamma<1,新图像比原图像亮
函数格式为:skimage.exposure.adjust_gamma(image, gamma=1)
gamma参数默认为1,原像不发生变化 。
from skimage import data, exposure, img_as_float
import matplotlib.pyplot as plt
image = img_as_float(data.moon())
gam1= exposure.adjust_gamma(image, 2) #调暗
gam2= exposure.adjust_gamma(image, 0.5) #调亮
plt.figure('adjust_gamma',figsize=(8,8)) plt.subplot(131)
plt.title('origin image')
plt.imshow(image,plt.cm.gray)
plt.axis('off') plt.subplot(132)
plt.title('gamma=2')
plt.imshow(gam1,plt.cm.gray)
plt.axis('off') plt.subplot(133)
plt.title('gamma=0.5')
plt.imshow(gam2,plt.cm.gray)
plt.axis('off') plt.show()
2、log对数调整
这个刚好和gamma相反
原理:I=log(I)
from skimage import data, exposure, img_as_float
import matplotlib.pyplot as plt
image = img_as_float(data.moon())
gam1= exposure.adjust_log(image) #对数调整
plt.figure('adjust_gamma',figsize=(8,8)) plt.subplot(121)
plt.title('origin image')
plt.imshow(image,plt.cm.gray)
plt.axis('off') plt.subplot(122)
plt.title('log')
plt.imshow(gam1,plt.cm.gray)
plt.axis('off') plt.show()
3、判断图像对比度是否偏低
函数:is_low_contrast(img)
返回一个bool型值
from skimage import data, exposure
image =data.moon()
result=exposure.is_low_contrast(image)
print(result)
输出为False
4、调整强度
函数:skimage.exposure.rescale_intensity(image, in_range='image', out_range='dtype')
in_range 表示输入图片的强度范围,默认为'image', 表示用图像的最大/最小像素值作为范围
out_range 表示输出图片的强度范围,默认为'dype', 表示用图像的类型的最大/最小值作为范围
默认情况下,输入图片的[min,max]范围被拉伸到[dtype.min, dtype.max],如果dtype=uint8, 那么dtype.min=0, dtype.max=255
import numpy as np
from skimage import exposure
image = np.array([51, 102, 153], dtype=np.uint8)
mat=exposure.rescale_intensity(image)
print(mat)
输出为[ 0 127 255]
即像素最小值由51变为0,最大值由153变为255,整体进行了拉伸,但是数据类型没有变,还是uint8
前面我们讲过,可以通过img_as_float()函数将unit8类型转换为float型,实际上还有更简单的方法,就是乘以1.0
import numpy as np
image = np.array([51, 102, 153], dtype=np.uint8)
print(image*1.0)
即由[51,102,153]变成了[ 51. 102. 153.]
而float类型的范围是[0,1],因此对float进行rescale_intensity 调整后,范围变为[0,1],而不是[0,255]
import numpy as np
from skimage import exposure
image = np.array([51, 102, 153], dtype=np.uint8)
tmp=image*1.0
mat=exposure.rescale_intensity(tmp)
print(mat)
结果为[ 0. 0.5 1. ]
如果原始像素值不想被拉伸,只是等比例缩小,就使用in_range参数,如:
import numpy as np
from skimage import exposure
image = np.array([51, 102, 153], dtype=np.uint8)
tmp=image*1.0
mat=exposure.rescale_intensity(tmp,in_range=(0,255))
print(mat)
输出为:[ 0.2 0.4 0.6],即原像素值除以255
如果参数in_range的[main,max]范围要比原始像素值的范围[min,max] 大或者小,那就进行裁剪,如:
mat=exposure.rescale_intensity(tmp,in_range=(0,102))
print(mat)
输出[ 0.5 1. 1. ],即原像素值除以102,超出1的变为1
如果一个数组里面有负数,现在想调整到正数,就使用out_range参数。如:
import numpy as np
from skimage import exposure
image = np.array([-10, 0, 10], dtype=np.int8)
mat=exposure.rescale_intensity(image, out_range=(0, 127))
print(mat)
输出[ 0 63 127]
python数字图像处理(8):对比度与亮度调整的更多相关文章
- python数字图像处理(17):边缘与轮廓
在前面的python数字图像处理(10):图像简单滤波 中,我们已经讲解了很多算子用来检测边缘,其中用得最多的canny算子边缘检测. 本篇我们讲解一些其它方法来检测轮廓. 1.查找轮廓(find_c ...
- 「转」python数字图像处理(18):高级形态学处理
python数字图像处理(18):高级形态学处理 形态学处理,除了最基本的膨胀.腐蚀.开/闭运算.黑/白帽处理外,还有一些更高级的运用,如凸包,连通区域标记,删除小块区域等. 1.凸包 凸包是指一 ...
- python数字图像处理(1):环境安装与配置
一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...
- 初始----python数字图像处理--:环境安装与配置
一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...
- Win8Metro(C#)数字图像处理--2.5图像亮度调整
原文:Win8Metro(C#)数字图像处理--2.5图像亮度调整 2.5图像亮度调整函数 [函数名称] 图像亮度调整函数BrightnessAdjustProcess(WriteableBit ...
- python数字图像处理(二)关键镜头检测
镜头边界检测技术简述 介绍 作为视频最基本的单元帧(Frame),它的本质其实就是图片,一系列帧通过某种顺序组成在一起就构成了视频.镜头边界是视频相邻两帧出现了某种意义的变化,即镜头边界反映了视频内容 ...
- python数字图像处理(9):直方图与均衡化
在图像处理中,直方图是非常重要,也是非常有用的一个处理要素. 在skimage库中对直方图的处理,是放在exposure这个模块中. 1.计算直方图 函数:skimage.exposure.histo ...
- python数字图像处理(14):高级滤波
本文提供更多更强大的滤波方法,这些方法放在filters.rank子模块内. 这些方法需要用户自己设定滤波器的形状和大小,因此需要导入morphology模块来设定. 1.autolevel 这个词在 ...
- python数字图像处理(5):图像的绘制
实际上前面我们就已经用到了图像的绘制,如: io.imshow(img) 这一行代码的实质是利用matplotlib包对图片进行绘制,绘制成功后,返回一个matplotlib类型的数据.因此,我们也可 ...
随机推荐
- iOS9 HTTP 不能正常使用的解决办法
Google后查证,iOS9引入了新特性App Transport Security (ATS).详情:App Transport Security (ATS) 新特性要求App内访问的网络必须使用H ...
- iOS之 随笔Xcode7的lipo
此文是学习所用,若要转载请注明出处 Xcode的lipo xcrun -sdk iphoneos lipo Xcode7以后lipo存放位置变化 /Applications/Xcode.app/Con ...
- linux命令之 用户和群组
一.保存用户信息的文件 1 /etc/passwd root:x:::root:/root:/bin/bash pwftp:x::::/alidata/www/wwwroot/:/sbin/nolog ...
- svn错误
在myEclipse客户端第一次连到SVN时,如:svn://192.168.20.242/MyProject1,然后要求输入用户名和密码.如果用户名和密码输入出错了,强行确定后.问题来了!会出现,以 ...
- Linux网络编程&内核学习
c语言: 基础篇 1.<写给大家看的C语言书(第2版)> 原书名: Absolute Beginner's Guide to C (2nd Edition) 原出版社: Sams 作者: ...
- JavaScript Patterns 4.2 Callback Pattern
function writeCode(callback) { // do something... callback(); // ... } function introduceBugs() { // ...
- apache 开启zgip 压缩模式
一.Apache开启gzip压缩模式在目录apache\conf\httpd.conf 配置 httpd.conf 文件: #去掉LoadModule deflate_module modules/m ...
- 深入剖析 Spring 框架的 BeanFactory
说到Spring框架,人们往往大谈特谈一些似乎高逼格的东西,比如依赖注入,控制反转,面向切面等等.但是却忘记了最基本的一点,Spring的本质是一个bean工厂(beanFactory)或者说bean ...
- Spring中Template模式与callback的结合使用浅析
Spring不论是与ibatis,还是与Hibernate的结合中,都使用到了Template模式与callback技术,来达到简化代码实现的目的.Template模式也即模板模式,用于对一些不太变化 ...
- nginx中使用srcache_nginx模块构建缓存
nginx中可以将lua嵌,让nginx执行lua脚本,可以处理高并发,非阻塞的处理各种请求,openresty项目中可以使用nignx可以直接构建 srcache_nginx + redis 缓存, ...