【BZOJ-2733】永无乡 Splay+启发式合并
2733: [HNOI2012]永无乡
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 2048 Solved: 1078
[Submit][Status][Discuss]
Description
永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示。某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛。如果从岛 a 出发经过若干座(含 0 座)桥可以到达岛 b,则称岛 a 和岛 b 是连 通的。现在有两种操作:B x y 表示在岛 x 与岛 y 之间修建一座新桥。Q x k 表示询问当前与岛 x连通的所有岛中第 k 重要的是哪座岛,即所有与岛 x 连通的岛中重要度排名第 k 小的岛是哪 座,请你输出那个岛的编号。
Input
输入文件第一行是用空格隔开的两个正整数 n 和 m,分别 表示岛的个数以及一开始存在的桥数。接下来的一行是用空格隔开的 n 个数,依次描述从岛 1 到岛 n 的重要度排名。随后的 m 行每行是用空格隔开的两个正整数 ai 和 bi,表示一开始就存 在一座连接岛 ai 和岛 bi 的桥。后面剩下的部分描述操作,该部分的第一行是一个正整数 q, 表示一共有 q 个操作,接下来的 q 行依次描述每个操作,操作的格式如上所述,以大写字母 Q 或B 开始,后面跟两个不超过 n 的正整数,字母与数字以及两个数字之间用空格隔开。 对于 20%的数据 n≤1000,q≤1000
对于 100%的数据 n≤100000,m≤n,q≤300000
Output
对于每个 Q x k 操作都要依次输出一行,其中包含一个整数,表 示所询问岛屿的编号。如果该岛屿不存在,则输出-1。
Sample Input
4 3 2 5 1
1 2
7
Q 3 2
Q 2 1
B 2 3
B 1 5
Q 2 1
Q 2 4
Q 2 3
Sample Output
2
5
1
2
HINT
Source
Solution
Splay+启发式合并 裸题
先建立多棵Splay(最初为n棵只有1个点的Splay),用并查集维护联通性,添加桥的操作,就相当于合并两棵Splay,那么就需要引入 启发式合并
本质上还是暴力合并,把size小的暴力拆解,暴力加到size大的,看起来很暴力,但总的复杂度却在O(nlog^2n)
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 100010
int n,m,q; int father[maxn];int que[maxn],head,tail;
void init(){for (int i=; i<=n; i++) father[i]=i;}
int find(int x){if (x==father[x]) return x; return father[x]=find(father[x]);}
int root,sz;
int fa[maxn],son[maxn][],key[maxn],cnt[maxn],size[maxn];
int get(int now){return son[fa[now]][]==now;}
void update(int now){size[now]=+size[son[now][]]+size[son[now][]];}
void rotate(int &now)
{
int old=fa[now],oldf=fa[old],which=get(now);
son[old][which]=son[now][which^]; fa[son[old][which]]=old;
fa[old]=now; son[now][which^]=old; fa[now]=oldf;
if (oldf) son[oldf][son[oldf][]==old]=now;
update(old); update(now);
}
void splay(int &now)
{
for (int f; (f=fa[now]); rotate(now))
if (fa[f])
if (get(now)==get(f))
rotate(f); else rotate(now);
}
void insert(int x,int rt)
{
int y=rt,last=;
while (y){
last=y;
if (key[x]>key[y]) y=son[y][];
else y=son[y][];
}
fa[x]=last; son[last][(key[x]>key[last])]=x;
update(x); update(last);
splay(x);
}
void merge(int u,int v)
{
splay(u); splay(v);
if (size[u]>size[v]) swap(u,v);
father[u]=v;
int head=,tail=,last=v;
que[]=u;
while (head<tail)
{
int x = que[++head];
if (son[x][]) que[++tail]=son[x][];
if (son[x][]) que[++tail]=son[x][];
}
for (int i=; i<=tail; i++) insert(que[i],last),last=que[i];
}
findkth(int rt,int k)
{
if (!rt) return -;
if (size[son[rt][]]+==k) return rt;
if (size[son[rt][]]+>k) return findkth(son[rt][],k);
else return findkth(son[rt][],k-(size[son[rt][]]+));
}
int vv[maxn];
int main()
{
n=read(),m=read(); init();
for (int i=; i<=n; i++) vv[i]=read();
for (int i=; i<=n; i++) key[i]=vv[i],size[i]=;
for (int i=; i<=m; i++)
{
int u=read(),v=read();
int f1=find(u),f2=find(v);
if (f1!=f2)
merge(f1,f2);
}
q=read();
for (int i=; i<=q; i++)
{
char opt[]; scanf("%s",opt);int a=read(),b=read();
if (opt[]=='B')
{
int f1=find(a),f2=find(b);
if (f1!=f2) merge(f1,f2);
}
if (opt[]=='Q')
{
splay(a);
printf("%d\n",findkth(a,b));
}
}
return ;
}
讲道理,启发式合并不是很难写,但表示YY了出来很快,调了好久苦逼的错误...智障!
【BZOJ-2733】永无乡 Splay+启发式合并的更多相关文章
- BZOJ 2733: [HNOI2012]永无乡 [splay启发式合并]
2733: [HNOI2012]永无乡 题意:加边,询问一个连通块中k小值 终于写了一下splay启发式合并 本题直接splay上一个节点对应图上一个点就可以了 并查集维护连通性 合并的时候,把siz ...
- [BZOJ2733] [HNOI2012] 永无乡 (splay启发式合并)
Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以 ...
- 【BZOJ 2733】【HNOI 2012】永无乡 Splay启发式合并
启发式合并而已啦,, 调试时发现的错误点:insert后没有splay,把要拆开的树的点插入另一个树时没有把ch[2]和fa设为null,找第k大时没有先减k,,, 都是常犯的错误,比赛时再这么粗心就 ...
- 洛谷.3224.[HNOI2012]永无乡(Splay启发式合并)
题目链接 查找排名为k的数用平衡树 合并时用启发式合并,把size小的树上的所有节点插入到size大的树中,每个节点最多需要O(logn)时间 并查集维护连通关系即可 O(nlogn*insert t ...
- 【洛谷3224/BZOJ2733】[HNOI2012]永无乡 (Splay启发式合并)
题目: 洛谷3224 分析: 这题一看\(n\leq100000\)的范围就知道可以暴力地用\(O(nlogn)\)数据结构乱搞啊-- 每个联通块建一棵Splay树,查询就是Splay查询第k大的模板 ...
- BZOJ 2733: [HNOI2012]永无乡(treap + 启发式合并 + 并查集)
不难...treap + 启发式合并 + 并查集 搞搞就行了 --------------------------------------------------------------------- ...
- bzoj 2733 永无乡 - 并查集 - 线段树
永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛. ...
- 【bzoj2733】[HNOI2012]永无乡 Treap启发式合并
题目描述 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达 ...
- BZOJ 2733 永无乡
splay启发式合并 启发式合并其实就是把集合数量小的合并到集合数量大的里去. 怎么合并呢,直接一个一个插入就行了.. 用并查集维护连通性,find(i)可以找到所在splay的编号 这题好像还可以合 ...
随机推荐
- Loadrunner:场景运行较长时间后报错:Message id [-17999] was not saved - Auto Log cache is too small to contain the message.
loadrunner运行时间较长后,跑数据过程老是失败,有如下error: Message id [-17999] was not saved - Auto Log cache is too smal ...
- Android 屏幕适配(二)增强版百分比布局库(percent-support-lib)
转载请标明出处: http://blog.csdn.net/lmj623565791/article/details/46767825: 本文出自:[张鸿洋的博客] 一 概述 上周一我们发布了Andr ...
- 2666 Accept Ratio(打表AC)
2666 Accept Ratio 时间限制: 1 s 空间限制: 32000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 某陈痴迷 ...
- ssh相关操作
连接:ssh username@ip 拷贝ssh客户端文件到ssh服务器: cp 文件名 username@ip:文件名 拷贝ssh服务器文件夹到ssh客户端: scp -r wanglianghe@ ...
- [教程]Oracle 11g Express 安装和使用教程
使用工具的第一步就是安装工具,配置环境!下面就Oracle 11g Express的安装和简单实用做一简介. 一.下载安装过程 去oracle的官网下载Oracle 11g express,大概300 ...
- [tools]tcp/udp连通性测试
一 端口连通性测试意义 测试网络端口可达性,确保给某些使用特定端口的app做链路连通性检测.使它们能够正常的运行起来. 二 法1 使用newclient发包,彼端tcpdump抓包观察是否能收到包 ...
- 第十章 使用MapKit
本项目是<beginning iOS8 programming with swift>中的项目学习笔记==>全部笔记目录 ------------------------------ ...
- nodejs初学————安装篇(iis8.5+windows8.1)
nodejs很久前就想玩玩,不过一直没时间,昨晚花了4个小时来捣鼓到iis上架设成功了,废话不说了. PS:我的系统是windows8.1 x64,所以自带iis8.5的,下载的文件也是x64的. N ...
- Android图像格式类及图像转换方法
Android图像格式类及图像转换方法介绍 一款软件的开发和图像密切相关,特别是移动应用程序,在视觉效果等方面是至关重要的,因为这直接关系到用户的体验效果.在Android程序开发的过程中,了解存在哪 ...
- sublime 插件的安装
sublime(text3)插件的安装 之前一直对sublime插件的安装搞不懂,导致自己不能充分地运用它的便捷性.昨天仔细看了下百度,恍然大悟,一下子把必备的插件都装了: 对于插件的安装,首先要在s ...