A Personal Selection of Books on E lectromagnetics and Computational E lectromagnetics---David B. Davidson
链接、
General Books on Electromagnetics
When our department recently reviewed our junior-level text, we were struck by the large number of books now available from wh ich to teach introductory electromagnetics. Here, I mention only my two personal favorites. The first is Ramo, Whinnery and van Duzer's cIassic text [S. Ramo, 1. R. Whinnery, and T. van Ouzer, Fields and Waves in Communication Electronics, Third Edition, New York, John Wiley and Sons, 1 994. ], first published in 1 965. This is the text from which I was taught as a student in 1 981. My second favorite is the unique text by Haus and Me\cher [H. A. Haus and 1. R. Melcher, Electromagnetic Fields and Energy, Englewood Cliffs, NJ, Prentice-Hall, 1 989. ], now sadly out of print. The book offers an unrivalled and rigorous development of quasi-statics, a field that most texts gloss over. We used this text for our juniors for many years, but it requires a stronger grounding in physics than most EE students now have. This, combined with being out of print, led us to replace it with a text more accessible to our students.
this work is still regularly cited today. It has recently been reissued by the IEEE, and it is again readily available. At the post-graduate level, Balanis's text has become a standard reference [4] . It is especially notable for its detailed and rigorous derivation of classic analytical results in electromagnetics, such as scattering from right circular cylinders and spheres. Harrington's book [5] is another standard reference, also available as an IEEE reprint; it is not dissimilar in coverage to Balanis. For more-advanced treatments - in particular, of integral equations - Ishimaru's text can be recommended [6] . Unlike most books on electromagnetics that first introduce analytical solutions, with numerics only introduced later, Smith 's book [7] starts with an immediate application of the FDTD before moving on to the more-classical approach. Another book taking a less-conventional approach is Elliot's particularly erudite text [8] . The book starts immediately with special relativity, and develops electromagnetics in that context. Jones presents an interesting unified treatment of acoustics and electromagnetics in [9] . His two-volume text is also of interest, although the slightly unconventional notation therein requires adjustment [10]. Tai 's text [11] is the standard reference on dyadic Green functions in electromagnetics. Felsen and Marcuvitz [12] - first published in 1 973, and also now available again as an IEEE reprint - is another classic in advanced EM theory, although not the easiest reading. Their coverage of the asymptotic evaluation of integrals is regularly cited. On guided waves, Collin is the standard reference [13]. For an very good treatment of stratified media, Chew's book rewards study [14]; Kong also addresses this in some detail in [15]. For an excellent treatment of electromagnetics in the context of radio astronomy, Kraus's book remains a valuable reference [16]. (The second edition ofthis text was effectively self-published). Although the latter part of both editions, especially that focusing on specific telescopes, is now of course very outdated, the first part retains its relevance. Many excellent books on electromagnetics ics than engineering oriented. A frequently referenced book in physics is Jackson's text [17]. Whilst I have referred to it on occasions, it can be a somewhat inaccessible for engineers. A volume (actually three volumes) to which I regularly refer are Feynman's Lectures in Physics [18]. Although first presented almost fifty years ago, Feynman's idiosyncratic approach remains compelling today, and his discussion of electromagnetic potential theory, including the Lienard-Wiechert potential, is superb. An interesting footnote here is that the final lecture concludes with a discussion of the Josephson junction, just invented at the time, and F eynman 's insight into its potential. In the closely related field of optics, Born and Wolf is the classic reference [19]. Finally, for those wanting an unconventional and challenging development with a very strong physics perspective, Schwinger's recently published and edited lecture notes on electromagnetics [20] can be recommended.
General Books on Computational Electromagnetics
Peterson, Ray, and Mittra's book [2 1] is a classic, with excellent coverage of both integral- and differential-equationbased techniques. It is perhaps strongest on the former. Bondeson, Rylander, and Ingelström's text [22] offers particularly concise coverage of the field, combined with a rigorous mathematical approach. It is particularly strong on basic aspects of finite differencing, especially when applied to complex exponentials - which underlies both dispersion and stability analyses of the FDTD. My own book [23] takes a slightly different approach to both these texts: it integrates theoretical development; MATLAB examples in one, two, and three dimensions; and application of commercial software. It provides approximately equal coverage of the FDTD, MoM, and FEM. Sadiku's book is widely referenced [24] . It is more general that the three discussed above, which focus primarily on full-wave applications. Booton's text [25] is similar to Sadiku's in its generality, but with less-extensive coverage. None of these texts addresses asymptotic methods - in particular, UTD - for which [26] remains the standard reference. It should also be mentioned that some recent antenna texts, for example [27, 28], contain introductory coverage of MoM, FDTD, and UTD
4. Special ized Books on Computational E lectromagnetics
There are several very good texts on the FDTD method. Kunz and Luebber's was the first [29], appearing in 1 993. Taftove's volume, presently in its third and co-authored edition [30], is the standard reference for the FDTD in CEM. The book offers encyclopedic coverage of the method. (Kunz and Luebbers were unfortunate to publish their book just before the revolutionary perfectly matched layer (PML) was invented by Berenger in 1 994, although the book still contains useful material, not the least a working FDTD code. This code has served as the basis for a number of academic codes.) Similarly, the FEM is weil served. There are a number of excellent texts on the FEM, including those by Jin (revised in 2002) [3 1], Silvester and Ferrari [32], and Volakis et al. [33]. Another useful source is the 1 996 volume edited by Itoh et al. [34] . More recently, Zhu and Cangellaris's text [35] provides coverage of many advanced issues in full-wave FEM. The book by Monk repays careful study by those wanting a text with more mathematical rigor, whilst still being firmly rooted in electromagnetics [36] . The MoM is currently less weil served by single-focus books. The original text by Harrington [37], although reprinted - but not revised - on several occasions and still very widely referenced, is not particularly useful when implementing complex RF simulation codes, since its focus is more on basic concepts. The text by Wang [38] is quite widely referenced, but was published many years back, and some of the more troublesome and advanced issues of a MoM implementation are not discussed in the book. Several important chapters in the now hard-to-find [39] are of considerable interest when implementing complex wire codes, and this still appears to be the only comprehensive derivation available of the magneticfield integral equation as generally used; this work generalized some aspects of Maue 's original derivation. Another hard-tofind reference with useful information on MoM procedures for arbitrarily oriented wire antennas is [40] . In this context, Moore and Pizer's monograph [4 1] was useful in its time, but unfortunately has never been revised, and may be difficult to locate. (Although a report rather than a book, a useful and readily available source on this topic is the theory manual for NEC-2 [42] .) Although focused specifically on antenna modeling as an application of MoM, the book by Makarov can be recommended [43].
1. S. Ramo, 1. R. Whinnery, and T. van Ouzer, Fields and Waves
in Communication Electronics, Third Edition, New York, John
Wiley and Sons, 1 994.
2. H. A. Haus and 1. R. Melcher, Electromagnetic Fields and
Energy, Englewood Cliffs, NJ, Prentice-Hall, 1 989.
3. J. A. Stratton, Electromagnetic Theory, New York, McGraw
Hill, 1 941.
4. C. A. Balanis, Advanced Engineering Electromagnetics,
New York, John Wiley and Sons, 1 989.
5. R. F. Harrington, Time-Harmonic Electromagnetic Fields,
New York, McGraw-Hill, 1 961.
6. A. Ishimaru, Electromagnetic Wave Propagation, Radiation
and Scattering, Engelwood Cliffs, NJ, Prentice-Hall, 1 991.
7. G. S. Smith, An Introduction to Classical Electromagnetic
Radiation, Cambridge, UK, Cambridge University Press, 1 997.
8. R. S. Elliott, Electromagnetics: History, Theory and Applications,
Piscataway, NJ, IEEE Press, 1 993 .
9. O. S. Jones, Acoustic and Electromagnetic Waves, Oxford,
Oxford University Press, 1 986.
1 5 8 IEEE Antennas and Propagation Magazine, Vol. 53, No. 6, Oecember 20 11
1 0. D. S. Jones, Methods in Electromagnetic Wave Propagation,
Oxford, Oxford University Press, 1 987.
11. C. T. Tai, Dyadic Green s Functions in Electromagnetic
Theory, Second Edition, New York, IEEE Press, 1 994.
1 2. L. B. Felsen and N. Marcuvitz, Radiation and Scattering
of Waves, IEEE Press, IEEE Press, 1 994, originally published
1 973 .
13. R. E. Collin, Field Theory of Guided Waves, New York,
IEEE Press, 1 991.
1 4. W. C. Chew, Waves and Fields in Inhomogeneous Media,
New York, van Nostrand Reinhold, 1 990.
1 5 . J. A. Kong, Electromagnetic Wave Theory, New York, John
Wiley and Sons, 1 986.
1 6. J. D. Kraus, Radio Astronomy, New York, McGraw-Hill,
1 968.
1 7. 1. D. Jackson, Classical Electrodynamics, Second Edition,
New York, John Wiley and Sons, 1 975.
1 8. R. P. Feynmann, R. B. Leighton, and P. Sands, The Feynmann
Lectures on Physics, Reading, MA, Addison-Wesley, 1 963.
1 9. M. Born and E. Wolf, Principles ofOptics: Electromagnetic
Theory of Propagation, Interference and DifJraction of Light,
Seventh Edition, Cambridge, UK, Cambridge University Press,
1 999.
20. 1. Schwinger, L. L. DeRaad, K. A. Milton, and w.-Y. Tsai,
Classical Electrodynamics, Reading, MA, Perseus Books,
1 998.
21. A. F. Peterson, S. L. Ray, and R. Mittra, Computational
Methods for Electromagnetics, Oxford and New York, Oxford
University Press and IEEE Press, 1 998.
22. A. Bondeson, T. Rylander, and P. Ingelström, Computational
Electromagnetics, New York, NY, Springer Science, 2005 .
23. D. B. Davidson, Computational Electromagnetics for RF
and Microwave Engineering, Second Edition, Cambridge, UK,
Cambridge University Press, 20 1 1.
24. M . N . O. Sadiku, Numerical Techniques in Electromagnetics
with MATLAB, Boca Raton, Florida, CRC Press, 2009.
25. R. C. Booton, Computational Methods for Electromagnetics
and Microwaves, New York, John Wiley and Sons, 1 992.
26. D. A. McNamara, C. W. I. Pistorius, and J. A. G. Malherbe,
The Uniform Geometrical Theory of DifJraction, Norwood,
MA, Artech House, 1 990.
27. W. L. Stutzman and G. A. Thiele, Antenna Theory and
Design, Second Edition, New York, John Wiley and Sons, 1 998.
28. C. A. Balanis, Antenna Theory: Analysis and Design, Second
Edition, New York, John Wiley and Sons, 1 997.
29. K. S. Kunz and R. 1. Luebbers, The Finite DifJerence Time
Domain Method for Electromagnetics, Boca Raton, Florida,
CRC Press, 1 993 .
30. A. Taflove and S. Hagness, Computational Electrodynamics:
The Finite DifJerence Time Domain Method, Third
Edition, Norwood, MA, Artech House, 2005.
31. 1.-M. Jin, The Finite Element Method in Electromagnetics,
Second Edition, New York, John Wiley and Sons, 2002.
32. P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical
Engineers, Third Edition, Cambridge, Cambridge University
Press, 1 996.
33. J. Volakis, A. Chatterjee, and L. Kempel, Finite Element
Method for Electromagnetics: Antennas, Microwave Circuits
and Scattering Applications, Oxford and New York, Oxford
University Press and IEEE Press, 1 998.
34. T. Itoh, G. Pelosi, and P. P. Silvester (eds.), Finite Element
Software for Microwave Engineering, New York, John Wiley
and Sons, 1 996.
35. Y. Zhu and A. C. Cangellaris, Multigrid Finite Element
Methods for Electromagnetic Field Modeling, New York, IEEE
Press, 2006.
36. P. Monk, Finite Element Methodsfor Maxwells Equations,
Oxford, UK, Oxford University Press, 2003 .
37. R. F. Harrington, Field Computation by Moment Methods,
Malabar, Florida, Robert E. Krieger, 1 982, reprint of 1 968
edition.
38. J. 1. H. Wang, Generalized Moment Methods in Electromagnetics,
New York, John Wiley and Sons, 1 991.
39. R. Mittra (ed.), Computer Techniquesfor Electromagnetics,
Oxford, Pergamon, 1 973.
40. W. A. Imbriale, "Applications of the Method ofMoments to
Thin-Wire Elements and Arrays," in R. Mittra (ed.), Numerical
and Asymptotic Techniques in Electromagnetics, Berlin,
Springer-Verlag, 1 975.
41. J. Moore and R. Pizer (eds.), Moment Methods in Electromagnetics
Techniques and Applications, Letchworth, Hertfordshire,
Research Studies Press, 1 986.
IEEE Antennas and Propagation Magazine, Vol. 53, No. 6, December 20 11 1 59
42. G. 1. Burke and A. 1. Poggio, "Numerical Electromagnetics
Code (NEC) - Method ofMoments; Part I: Program Description
- Theory," January 1 981.
43 . S . N . Makarov, Antenna and EM modeling with MATLAB,
New York, John Wiley and Sons, 2002.
44. W. H. Press, S. A. Teukolsky, W. Vettering, and B. R.
Flannery, Numerieal Reeipes: The Art ofScientifie Computing,
Third Edition, Cambridge, England, Cambridge University
Press, 2007.
45 . R. D. Richtmyer and K. Morton, DifJerenee Methods for
Initial- Value Problems, Seeond Edition, New York, John Wiley
and Sons, 1 967, 1 994 reprint, Malabar, FA, Krieger.
46. T. 1. R. Hughes, The Finite Element Method: Linear Static
and Dynamic Finite Element Analysis, Englewood Cliffs, NJ,
Prentice-Hall, 1 987, Dover reprint, 2000.
47. D. Braess, Finite Elements Theory, Fast Solvers, and
Applications in Solid Mechanics, Second Edition, Cambridge,
UK, Cambridge University Press, 2001.
48. M. Boas, Mathematical Methods in the Physical Sciences,
Third Edition, New York, John Wiley and Sons, 2005.
49. G. B. Arfken and H. J. Weber, Mathematical Methods for
Physicists, Second Edition, Burlington, MA, Elsevier, 2005.
50. B. D. Reddy, Introductory Functional Analysis: With
Applications to Boundary- Value Problems and Finite Elements,
New York, Springer-Verlag, 1 998.
51. G. H. Golub and C. F. Van Loan, Matrix Computations,
Third Edition, Baltimore, Johns Hopkins University Press,
1 996.
52. A. Jennings, Matrix Computation for Engineers and Scientists,
Chichester, John Wiley and Sons, 1 985.
53. I. Stakgold, Green :S Functions and Boundary Value
Problems, New York, John Wiley and Sons, 1 979.
54. D. G. Dudley, Mathematieal Foundations for Electromagnetie
Theory, New York, IEEE Press, 1 994. A�
1 60 IEEE Antennas
A Personal Selection of Books on E lectromagnetics and Computational E lectromagnetics---David B. Davidson的更多相关文章
- 【转】[特征选择] An Introduction to Feature Selection 翻译
中文原文链接:http://www.cnblogs.com/AHappyCat/p/5318042.html 英文原文链接: An Introduction to Feature Selection ...
- Discover Feature Engineering, How to Engineer Features and How to Get Good at It
Feature engineering is an informal topic, but one that is absolutely known and agreed to be key to s ...
- c 语言写的高级Oracle®数据库调优及监控工具
http://www.lab128.com.cn/lab128_why.html ###另外一款ORALCE Monitor tool freee https://www.myorasql.com/ ...
- From 《Soft Skill》——Chapter 69. My personal success book list
There have been many excellent books that have greatly influenced what I believe and how I behave. I ...
- [转] How Bill Gates read books
Bill Gates is one of the most famous figures in the business world. He is one of the richest men in ...
- What are some good books/papers for learning deep learning?
What's the most effective way to get started with deep learning? 29 Answers Yoshua Bengio, ...
- (转)A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers
A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers. Updated 20 ...
- Books from Joe's blog
Some books that I really enjoy(ed) It's been quite some time since I blogged about what I've been re ...
- Input/output subsystem having an integrated advanced programmable interrupt controller for use in a personal computer
A computer system is described having one or more host processors, a host chipset and an input/outpu ...
随机推荐
- ubuntu 14.04 64位安装bigbluebutton
BigBlueButton 是一个使用 ActionScript 开发的在线视频会议系统或者是远程教育系统,主要功能包括在线PPT演示.视频交流和语音交流,还可以进行文字交流.举手发言等功能,特别适合 ...
- C#按回车Enter使输入焦点自动跳到下一个TextBox的方法收集
在录入界面中,用户往往需要按回车键时光标自动跳入下一个文本框,以方便录入操作.在C#中实现该功能有多种方法,以下是小编收集的不使用TAB键,而直接用回车键将光标转到下一个文本框的实现方法. 一.利用W ...
- C#的回调方法
C# 里面回调方法一般指某个委托.也可以说是接口. using System; using System.Collections.Generic; using System.Linq; using S ...
- Hibernate之lazy延迟加载(转)
一.延迟加载的概念 当Hibernate从数据库中加载某个对象时,不加载关联的对象,而只是生成了代理对象,获取使用session中的load的方法(在没有改变lazy属性为false的情况下)获取到的 ...
- Linux守护进程的编程实现(转)
http://blog.csdn.net/zg_hover/article/details/2553321 http://blog.csdn.net/kongdefei5000/article/det ...
- Oauth笔记
上周的工作有安全验证这一块,但不懂,只知道有几个关键字Oauth.secret-key .token.签名等.今天就查下资料做笔记. Oauth是什么 不依靠用户账号和密码就能获得访问资源权限 本质: ...
- Bit-Coin收入的一分钱
好吧,这是我在Slush's pool上对Bit-coin收入的第一分钱. 回想起来,2013年平安夜开始到今天,将近3个月没日没夜窝在这个矿里挖矿 从最开始的集成显卡挖,买了显卡挖,加了显卡挖,使用 ...
- 读书笔记2013第10本:《学得少却考得好Learn More Study Less》
<学得少却考得好Learn More Study Less>这本书最早是从褪墨网站上看到的,crowncheng翻译了全文.这本书介绍了不少学习方法,非常适合在校的学生,原文的作者Scot ...
- 深入了解Activity-生命周期
一 介绍 Activity是android中使用最为频繁的组件,在官方文档中是这样描述的:An activity is a single, focused thing that the user ca ...
- 【读书笔记】iOS-查看一个软件ipa包的内容
一,打开itunes----->我的iPhone应用程序. 二,右键点击app---->在Finder中显示---->出现下图所示界面. 三,将上图中的ipa包拷贝到桌面,如下图所示 ...