http://handong1587.github.io/deep_learning/2015/10/09/rnn-and-lstm.html  //RNN and LSTM

http://handong1587.github.io/deep_learning/2015/10/09/saliency-prediction.html //saliency Predection

http://handong1587.github.io/deep_learning/2015/10/09/scene-labeling.html //Scene Label

RNN and LSTM

Published: 09 Oct 2015  Category: deep_learning

Types of RNN

1) Plain Tanh Recurrent Nerual Networks

2) Gated Recurrent Neural Networks (GRU)

3) Long Short-Term Memory (LSTM)

Tutorials

A Beginner’s Guide to Recurrent Networks and LSTMs

http://deeplearning4j.org/lstm.html

A Deep Dive into Recurrent Neural Nets

http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/

Long Short-Term Memory: Tutorial on LSTM Recurrent Networks

http://people.idsia.ch/~juergen/lstm/index.htm

LSTM implementation explained

http://apaszke.github.io/lstm-explained.html

Recurrent Neural Networks Tutorial

Understanding LSTM Networks

Recurrent Neural Networks in DL4J

http://deeplearning4j.org/usingrnns.html

Train RNN

A Simple Way to Initialize Recurrent Networks of Rectified Linear Units

Sequence Level Training with Recurrent Neural Networks

Papers

Generating Sequences With Recurrent Neural Networks

DRAW: A Recurrent Neural Network For Image Generation

Unsupervised Learning of Video Representations using LSTMs(ICML2015)

LSTM: A Search Space Odyssey

Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets

A Critical Review of Recurrent Neural Networks for Sequence Learning

Scheduled Sampling for
Sequence Prediction with Recurrent Neural Networks(Winner of MSCOCO image
captioning challenge, 2015)

Visualizing and
Understanding Recurrent Networks(Andrej Karpathy, Justin Johnson, Fei-Fei Li)

Grid Long Short-Term
Memory

Depth-Gated LSTM

Deep Knowledge Tracing

Top-down Tree Long
Short-Term Memory Networks

Alternative structures
for character-level RNNs(INRIA & Facebook AI Research)

Pixel Recurrent Neural
Networks (Google DeepMind)

Long Short-Term
Memory-Networks for Machine Reading

Lipreading with Long
Short-Term Memory

Associative Long
Short-Term Memory

Representation of
linguistic form and function in recurrent neural networks

Architectural
Complexity Measures of Recurrent Neural Networks

Easy-First Dependency
Parsing with Hierarchical Tree LSTMs

Training Input-Output
Recurrent Neural Networks through Spectral Methods

Learn To Execute Programs

Learning to Execute

Neural
Programmer-Interpreters (Google DeepMind)

A
Programmer-Interpreter Neural Network Architecture for Prefrontal Cognitive
Control

Convolutional RNN: an
Enhanced Model for Extracting Features from Sequential Data

Attention Models

Recurrent Models of
Visual Attention
 (Google
DeepMind. NIPS2014)

Recurrent Model of
Visual Attention(Google DeepMind)

Show, Attend and Tell:
Neural Image Caption Generation with Visual Attention

A Neural Attention
Model for Abstractive Sentence Summarization(EMNLP 2015. Facebook AI Research)

Effective Approaches
to Attention-based Neural Machine Translation(EMNLP2015)

Generating Images from
Captions with Attention

Attention and Memory
in Deep Learning and NLP

Survey on the
attention based RNN model and its applications in computer vision

Train RNN

Training Recurrent
Neural Networks (PhD thesis)

Deep learning for
control using augmented Hessian-free optimization


Hierarchical Conflict
Propagation: Sequence Learning in a Recurrent Deep Neural Network

Recurrent Batch
Normalization

Optimizing Performance
of Recurrent Neural Networks on GPUs

Codes

NeuralTalk
(Deprecated): a Python+numpy project for learning Multimodal Recurrent Neural
Networks that describe images with sentences

NeuralTalk2: Efficient
Image Captioning code in Torch, runs on GPU

char-rnn in Blocks

Project:
pycaffe-recurrent

Using neural networks
for password cracking

Recurrent neural
networks for decoding CAPTCHAS

torch-rnn: Efficient,
reusable RNNs and LSTMs for torch

Deploying a model
trained with GPU in Torch into JavaScript, for everyone to use

LSTM implementation on
Caffe

Blog

Survey on
Attention-based Models Applied in NLP

http://yanran.li/peppypapers/2015/10/07/survey-attention-model-1.html

Survey on Advanced
Attention-based Models

http://yanran.li/peppypapers/2015/10/07/survey-attention-model-2.html

Online Representation
Learning in Recurrent Neural Language Models

http://www.marekrei.com/blog/online-representation-learning-in-recurrent-neural-language-models/

Fun with Recurrent
Neural Nets: One More Dive into CNTK and TensorFlow

http://esciencegroup.com/2016/03/04/fun-with-recurrent-neural-nets-one-more-dive-into-cntk-and-tensorflow/

Materials to
understand LSTM

https://medium.com/@shiyan/materials-to-understand-lstm-34387d6454c1#.4mt3bzoau

Understanding LSTM and
its diagrams (
★★★★★)

Persistent RNNs: 30
times faster RNN layers at small mini-batch sizes (Greg Diamos, Baidu Silicon
Valley AI Lab)

http://svail.github.io/persistent_rnns/

All of Recurrent
Neural Networks

https://medium.com/@jianqiangma/all-about-recurrent-neural-networks-9e5ae2936f6e#.q4s02elqg

Resources

Awesome Recurrent
Neural Networks - A curated list of resources dedicated to RNN

Jürgen Schmidhuber’s
page on Recurrent Neural Networks

http://people.idsia.ch/~juergen/rnn.html

Reading and
Questions

Are there any
Recurrent convolutional neural network network implementations out there ?

« Reinforcement LearningSaliency Prediction »

Saliency Prediction

 Published: 09 Oct 2015  Category: deep_learning

This task involves predicting the salient regions of an image given by human eye fixations.

Large-scale optimization of hierarchical features for saliency prediction in natural images

Predicting Eye Fixations using Convolutional Neural Networks

DeepFix: A Fully Convolutional Neural Network for predicting Human Eye Fixations

DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection

SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection

Shallow and Deep Convolutional Networks for Saliency Prediction

Scene Labeling

 Published: 09 Oct 2015  Category: deep_learning

Papers

Learning hierarchical features for scene labeling

  • intro: “Their approach comprised of densely computing multi-scale CNN features for each pixel and aggregating them over image regions upon which they are classified. However, their methodstill required the post-processing step of generating over-segmented regions, like superpixels, for obtaining the final segmentation result. Additionally, the CNNs used for multi-scale feature learning were not very deep with only three convolution layers.”
  • paper: http://yann.lecun.com/exdb/publis/pdf/farabet-pami-13.pdf

Indoor Semantic Segmentation using depth information

Multi-modal unsupervised feature learning for rgb-d scene labeling

Using neon for Scene Recognition: Mini-Places2

Attend, Infer, Repeat: Fast Scene Understanding with Generative Models

Challenges

Large-scale Scene Understanding Challenge

RNN and LSTM saliency Predection Scene Label的更多相关文章

  1. RNN和LSTM

    一.RNN 全称为Recurrent Neural Network,意为循环神经网络,用于处理序列数据. 序列数据是指在不同时间点上收集到的数据,反映了某一事物.现象等随时间的变化状态或程度.即数据之 ...

  2. RNN、LSTM、Seq2Seq、Attention、Teacher forcing、Skip thought模型总结

    RNN RNN的发源: 单层的神经网络(只有一个细胞,f(wx+b),只有输入,没有输出和hidden state) 多个神经细胞(增加细胞个数和hidden state,hidden是f(wx+b) ...

  3. RNN 与 LSTM 的应用

    之前已经介绍过关于 Recurrent Neural Nnetwork 与 Long Short-Trem Memory 的网络结构与参数求解算法( 递归神经网络(Recurrent Neural N ...

  4. Naive RNN vs LSTM vs GRU

    0 Recurrent Neural Network 1 Naive RNN 2 LSTM peephole Naive RNN vs LSTM 记忆更新部分的操作,Naive RNN为乘法,LSTM ...

  5. TensorFlow之RNN:堆叠RNN、LSTM、GRU及双向LSTM

    RNN(Recurrent Neural Networks,循环神经网络)是一种具有短期记忆能力的神经网络模型,可以处理任意长度的序列,在自然语言处理中的应用非常广泛,比如机器翻译.文本生成.问答系统 ...

  6. 浅谈RNN、LSTM + Kreas实现及应用

    本文主要针对RNN与LSTM的结构及其原理进行详细的介绍,了解什么是RNN,RNN的1对N.N对1的结构,什么是LSTM,以及LSTM中的三门(input.ouput.forget),后续将利用深度学 ...

  7. 3. RNN神经网络-LSTM模型结构

    1. RNN神经网络模型原理 2. RNN神经网络模型的不同结构 3. RNN神经网络-LSTM模型结构 1. 前言 之前我们对RNN模型做了总结.由于RNN也有梯度消失的问题,因此很难处理长序列的数 ...

  8. RNN以及LSTM的介绍和公式梳理

    前言 好久没用正儿八经地写博客了,csdn居然也有了markdown的编辑器了,最近花了不少时间看RNN以及LSTM的论文,在组内『夜校』分享过了,再在这里总结一下发出来吧,按照我讲解的思路,理解RN ...

  9. 深度学习:浅谈RNN、LSTM+Kreas实现与应用

    主要针对RNN与LSTM的结构及其原理进行详细的介绍,了解什么是RNN,RNN的1对N.N对1的结构,什么是LSTM,以及LSTM中的三门(input.ouput.forget),后续将利用深度学习框 ...

随机推荐

  1. 把自己主要在做的几个工程都传到了GitHub上

    GitHub链接 https://github.com/MichaelSuen-thePointer 里面有4个项目,一个是我的C大程大作业,一个3600+行的字典程序,已经弃坑不再更新 还有一个叫w ...

  2. webpy分页类 + 上传类

    webpy没有分页类.按照php的思路.自己编了一个.数据库用的是sqlite. class Page(object): '''分页类''' def __init__(self,page_size,d ...

  3. logstash 因为jdk版本不对造成索引时间戳失败

    版本 logstash 1.5.0 RC2 JDK 1.7.15 Logstash推荐使用JDK 1.7.75 每次启动都是会有部分的数据无法替换日志中的时间戳,导致日志时间戳被认定为当前读取时间. ...

  4. 七、context command

    context command是用来新建自己的工具,可以调用OPENGL,获取鼠标操作函数,在view窗口画自己想画的东西.(我是这麽理解的,可以以后再确定一下) 下面是一个context comma ...

  5. 9. Linux远程登录

    1. 检查网络是否通畅 C:\Users\cfm>ping 192.168.232.131 正在 Ping 192.168.232.131 具有 32 字节的数据:来自 192.168.232. ...

  6. Spring:No bean named 'beanScope' is defined

    初学Spring,“No bean named 'beanScope' is defined”这个问题困扰了我好几个小时,查资料无果后,重写好几遍代码后发现问题居然是配置文件不能放在包里...要放在s ...

  7. ios异常(crash)输出

    最近突然想起友盟的sdk附带的一个功能:将闪退异常情况上报服务器,(stackflow,github)找了一些资料,自己写了一个demo,想起来好久没有写过blog了,顺便分享. 其实不止是ios,a ...

  8. JS,Jquery获取各种屏幕的宽度和高度

    Javascript: 网页可见区域宽: document.body.clientWidth网页可见区域高: document.body.clientHeight网页可见区域宽: document.b ...

  9. zedboard如何从PL端控制DDR读写(四)

    PS-PL之间的AXI 接口分为三种:• 通用 AXI(General Purpose AXI) — 一条 32 位数据总线,适合 PL 和 PS 之间的中低速通信.接口是透传的不带缓冲.总共有四个通 ...

  10. SQL笔记 [长期更新] (-2015.4)

    [遍历所有表,复制表结构,复制表数据] --插入语句SELECT * INTO A FROM B 是在还没有A表的情况下,直接通过B表创建并把B表数据复制到A表里面,之后A,B表的结构和数据完全一样. ...