【python cookbook】【数据结构与算法】4.找到最大或最小的N个元素
问题:想在某个集合中找出最大或最小的N个元素
解决方案:heapq模块中的nlargest()和nsmallest()两个函数正是我们需要的。
>>> import heapq
>>> nums=[1,8,2,23,7,-4,18,23,42,37,2]
>>> print(heapq.nlargest(3,nums))
[42, 37, 23]
>>> print(heapq.nsmallest(3,nums))
[-4, 1, 2]
>>>
这两个函数接受一个参数key,允许其工作在更复杂的数据结构之上:
# example.py
#
# Example of using heapq to find the N smallest or largest items import heapq portfolio = [
{'name': 'IBM', 'shares': 100, 'price': 91.1},
{'name': 'AAPL', 'shares': 50, 'price': 543.22},
{'name': 'FB', 'shares': 200, 'price': 21.09},
{'name': 'HPQ', 'shares': 35, 'price': 31.75},
{'name': 'YHOO', 'shares': 45, 'price': 16.35},
{'name': 'ACME', 'shares': 75, 'price': 115.65}
] cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price'])
expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price']) print(cheap)
print(expensive)
Python 3.4.0 (v3.4.0:04f714765c13, Mar 16 2014, 19:24:06) [MSC v.1600 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.
>>> ================================ RESTART ================================
>>>
[{'name': 'YHOO', 'price': 16.35, 'shares': 45}, {'name': 'FB', 'price': 21.09, 'shares': 200}, {'name': 'HPQ', 'price': 31.75, 'shares': 35}]
[{'name': 'AAPL', 'price': 543.22, 'shares': 50}, {'name': 'ACME', 'price': 115.65, 'shares': 75}, {'name': 'IBM', 'price': 91.1, 'shares': 100}]
>>>
如果正在寻找的最大或最小的N个元素,且相比于集合中元素的数量,N很小时,下面的函数性能更好。
这些函数首先会在底层将数据转化为列表,且元素会以堆的顺序排列。
>>> import heapq
>>> nums=[1,8,2,23,7,-4,18,23,42,37,2]
>>> heap=list(nums)
>>> heap
[1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2]
>>> heapq.heapify(heap) #heapify()参数必须是list,此函数将list变成堆,实时操作。从而能够在任何情况下使用堆的函数。
>>> heap
[-4, 2, 1, 23, 7, 2, 18, 23, 42, 37, 8]
>>> heapq.heappop(heap)#如下是为了找到第3小的元素
-4
>>> heapq.heappop(heap)
1
>>> heapq.heappop(heap)
2
>>>
堆(heap)最重要的特性就是heap[0]总是最小的元素。可通过heapq.heappop()轻松找到最小值,这个操作的复杂度为O(logN),N代表堆得大小。
总结:
1、当要找的元素数量相对较小时,函数nlargest()和nsmallest()才最适用。
2、若只是想找到最小和最大值(N=1)时,使用min()和max()会更快。
3、若N和集合本身的大小差不多,更快的方法是先对集合排序再进行切片操作(例如使用sorted(items)[:N]或sorted(items)[-N:])
4、heapq.heappush(heap, item):将item压入到堆数组heap中。如果不进行此步操作,后面的heappop()失效;
heapq.heappop(heap):从堆数组heap中取出最小的值,并返回。
heapq.heapify(list):参数必须是list,此函数将list变成堆,实时操作。从而能够在任何情况下使用堆的函数。
heapq.heappushpop(heap, item):是上述heappush和heappop的合体,同时完成两者的功能.注意:相当于先操作了heappush(heap,item),然后操作heappop(heap)
heapreplace(heap, item):是heappop(heap)和heappush(heap,item)的联合操作。注意,与heappushpop(heap,item)的区别在于,顺序不同,这里是先进行删除,后压入堆
heap,merge(*iterables)
>>> h=[] #定义一个list
>>> from heapq import * #引入heapq模块
>>> h
[]
>>> heappush(h,5) #向堆中依次增加数值
>>> heappush(h,2)
>>> heappush(h,3)
>>> heappush(h,9)
>>> h #h的值
[2, 5, 3, 9]
>>> heappop(h) #从h中删除最小的,并返回该值
2
>>> h
[3, 5, 9]
>>> h.append(1) #注意,如果不是压入堆中,而是通过append追加一个数值
>>> h #堆的函数并不能操作这个增加的数值,或者说它堆对来讲是不存在的
[3, 5, 9, 1]
>>> heappop(h) #从h中能够找到的最小值是3,而不是1
3
>>> heappush(h,2) #这时,不仅将2压入到堆内,而且1也进入了堆。
>>> h
[1, 2, 9, 5]
>>> heappop(h) #操作对象已经包含了1
1
>>> h
[1, 2, 9, 5]
>>> heappop(h)
1
>>> heappushpop(h,4) #增加4同时删除最小值2并返回该最小值,与下列操作等同:
2 #heappush(h,4),heappop(h)
>>> h
[4, 5, 9]
>>> a=[3,6,1]
>>> heapify(a) #将a变成堆之后,可以对其操作
>>> heappop(a)
1
>>> b=[4,2,5] #b不是堆,如果对其进行操作,显示结果如下
>>> heappop(b) #按照顺序,删除第一个数值并返回,不会从中挑选出最小的
4
>>> heapify(b) #变成堆之后,再操作
>>> heappop(b)
2
>>> a=[]
>>> heapreplace(a,3) #如果list空,则报错
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: index out of range
>>> heappush(a,3)
>>> a
[3]
>>> heapreplace(a,2) #先执行删除(heappop(a)->3),再执行加入(heappush(a,2))
3
>>> a
[2]
>>> heappush(a,5)
>>> heappush(a,9)
>>> heappush(a,4)
>>> a
[2, 4, 9, 5]
>>> heapreplace(a,6) #先从堆a中找出最小值并返回,然后加入6
2
>>> a
[4, 5, 9, 6]
>>> heapreplace(a,1) #1是后来加入的,在1加入之前,a中的最小值是4
4
>>> a
[1, 5, 9, 6]
>>> a=[2,4,6]
>>> b=[1,3,5]
>>> c=merge(a,b)
>>> list(c)
[1, 2, 3, 4, 5, 6]
【python cookbook】【数据结构与算法】4.找到最大或最小的N个元素的更多相关文章
- Python Cookbook 数据结构和算法
1.查找最大或最小的N个元素 import heapq nums = [1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2] print(heapq.nlargest(3, n ...
- [0x00 用Python讲解数据结构与算法] 概览
自从工作后就没什么时间更新博客了,最近抽空学了点Python,觉得Python真的是很强大呀.想来在大学中没有学好数据结构和算法,自己的意志力一直不够坚定,这次想好好看一本书,认真把基本的数据结构和算 ...
- 《用Python解决数据结构与算法问题》在线阅读
源于经典 数据结构作为计算机从业人员的必备基础,Java, c 之类的语言有很多这方面的书籍,Python 相对较少, 其中比较著名的一本 problem-solving-with-algorithm ...
- 找到最大或最小的N个元素
问题: 想在某个集合中找到最大或最小的N个元素 解决方案: heapq 模块中有两个函数 nlargest() 和 nsmallest() 它们正是我们需要的.例如: import heapq n ...
- Python(一)数据结构和算法的20个练习题问答
数据结构和算法 Python 提供了大量的内置数据结构,包括列表,集合以及字典.大多数情况下使用这些数据结构是很简单的. 但是,我们也会经常碰到到诸如查询,排序和过滤等等这些普遍存在的问题. 因此,这 ...
- [0x01 用Python讲解数据结构与算法] 关于数据结构和算法还有编程
忍耐和坚持虽是痛苦的事情,但却能渐渐地为你带来好处. ——奥维德 一.学习目标 · 回顾在计算机科学.编程和问题解决过程中的基本知识: · 理解“抽象”在问题解决过程中的重要作用: · 理解并实现抽象 ...
- python cookbook 数据结构
保留最后n个元素: from collections import deque def search (lines, pattern, history=): previous_lines = dequ ...
- 【python cookbook】【数据结构与算法】18.将名称映射到序列的元素中
问题:希望通过名称来访问元素,减少结构中对位置的依赖性 解决方案:使用命名元组collections.namedtuple().它是一个工厂方法,返回的是python中标准元组类型的子类,提供给它一个 ...
- 找到最大或最小的N个元素---heapq模块
堆排序heapq的用法 基本用法: 复杂数据结构: # coding=utf- # example.py # Example of using heapq to find the N smallest ...
随机推荐
- SQLAlchemy 对象缓存和刷新
SQLAlchemy 对象缓存和刷新 SQLAlchemy 带有对象缓存机制,在重复查询相同的对象时,直接先查询本地的缓存,而不需要从数据库加载数据. 在每个 model 对象的内部,SQLAlche ...
- Power-BI 零售连锁行业解决方案
引入:一方面消费需求日益增长,另一方面市场竞争日趋激烈,电商对传统实体店的冲击越来越大,再加上各项成本费用高涨,利润走低.数字化决策可帮助企业增强运营能力.提升单店产出,必将成为企业面对激烈竞争.快速 ...
- linux type命令用法_转
转自:http://codingstandards.iteye.com/blog/831504 在脚本中type可用于检查命令或函数是否存在,存在返回0,表示成功:不存在返回正值,表示不成功. $ t ...
- 三层交换配置VLAN+DHCP+ACL
使用思科模拟软件Cisco Packet Tracer Student,软件功能有限,只能架设简单的网络架构,适合初学者使用.
- Python_01 在DOS环境运行python程序
>怎么在DOS环境运行一个python程序 >>在文本编辑器中编辑程序,最后保存成 文件名.py 的格式 >>在DOS界面下找到源程序所在的路径,然后用 pyth ...
- Collections的排序之一(Java)
package home.collection.arr; import java.util.ArrayList; import java.util.Collections; import java.u ...
- redmine一键安装
参加项目 bitnami项目 https://bitnami.com/stack/redmine/installer 百度网盘地址为:http://pan.baidu.com/s/1jESnO
- Siverlight去掉ToolTip的白色边框
control作为tooltip后,外框背景是白色的,并且有边框. 我们可以定义 一个样式去掉. <Style x:Key="ToolTipTransparentStyle" ...
- IOS 加载Xib 后 如何 动态修改xib中的控件frame
看看xib里view是不是设置了自动布局 use auto layout.取消掉就可以了.
- Effective C++ 5.实现
//条款26:尽量延后变量的定义式出现的时间 // 1.不仅应该延后变量的定义,更应该直到使用该变量的前一刻为止,甚至应该尝试延后这份定义直到能够给它初始值为止.如果这样,不仅能够避免构造和析构的非必 ...