http://www.wikioi.com/problem/1227

裸题,拆点,容量为1,费用为点权的负数(代表只能取一次)。再在拆好的两个点连边,容量为oo,费用为0。(代表能取0)

然后向右和下连边,容量我oo,费用为0

最后跑一次最小费用,取绝对值就是答案。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=5500, M=1000000, oo=~0u>>1;
int ihead[N], cnt=1, d[N], p[N], n, k, vis[N], q[N], front, tail;
struct ED { int from, to, cap, w, next; } e[M];
inline void add(const int &u, const int &v, const int &c, const int &w) {
e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v; e[cnt].from=u; e[cnt].cap=c; e[cnt].w=w;
e[++cnt].next=ihead[v]; ihead[v]=cnt; e[cnt].to=u; e[cnt].from=v; e[cnt].cap=0; e[cnt].w=-w;
}
inline const bool spfa(const int &s, const int &t) {
for1(i, 0, t) d[i]=1000000000, vis[i]=0;
vis[s]=1; d[s]=front=tail=0; q[tail++]=s;
int u, v, i;
while(front!=tail) {
u=q[front++]; if(front==N) front=0;
for(i=ihead[u]; i; i=e[i].next) if(e[i].cap && d[v=e[i].to]>d[u]+e[i].w) {
d[v]=d[u]+e[i].w; p[v]=i;
if(!vis[v]) {
vis[v]=1, q[tail++]=v;
if(tail==N) tail=0;
}
}
vis[u]=0;
}
return d[t]!=1000000000;
}
int mcf(const int &s, const int &t) {
int ret=0, f, u;
while(spfa(s, t)) {
for(f=oo, u=t; u!=s; u=e[p[u]].from) f=min(f, e[p[u]].cap);
for(u=t; u!=s; u=e[p[u]].from) e[p[u]].cap-=f, e[p[u]^1].cap+=f;
ret+=d[t]*f;
}
return ret;
}
int main() {
read(n); read(k);
int s=0, t=n*n*2+1, c, now, pw=n*n;
for1(i, 1, n) for1(j, 1, n) {
read(c); now=(i-1)*n+j;
add(now, now+pw, 1, -c); add(now, now+pw, oo, 0);
if(i<n) add(now+pw, now+n, oo, 0);
if(j<n) add(now+pw, now+1, oo, 0);
}
add(s, 1, k, 0); add(n*n*2, t, k, 0);
printf("%d\n", -mcf(s, t));
return 0;
}

题目描述 Description

给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来,该格子的数就变成0,这样一共走K次,现在要求K次所达到的方格的数的和最大

输入描述 Input Description

第一行两个数n,k(1<=n<=50, 0<=k<=10)

接下来n行,每行n个数,分别表示矩阵的每个格子的数

输出描述 Output Description

一个数,为最大和

样例输入 Sample Input

3 1

1 2 3

0 2 1

1 4 2

样例输出 Sample Output

11

数据范围及提示 Data Size & Hint

1<=n<=50, 0<=k<=10

【wikioi】1227 方格取数 2(费用流)的更多相关文章

  1. Codevs 1227 方格取数 2(费用流)

    1227 方格取数 2 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 查看运行结果 题目描述 Description 给出一个n*n的矩阵,每一格有一个非负整数 ...

  2. 洛谷 - P2045 - 方格取数加强版 - 费用流

    原来这种题的解法是费用流. 从一个方格的左上走到右下,最多走k次,每个数最多拿走一次. 每次走动的流量设为1,起始点拆点成限制流量k. 每个点拆成两条路,一条路限制流量1,费用为价值相反数.另一条路无 ...

  3. 洛谷P2045 方格取数加强版(费用流)

    题意 题目链接 Sol 这题能想到费用流就不难做了 从S向(1, 1)连费用为0,流量为K的边 从(n, n)向T连费用为0,流量为K的边 对于每个点我们可以拆点限流,同时为了保证每个点只被经过一次, ...

  4. LG2045 方格取数加强版 费用流

    问题描述 LG2045 题解 费用流. 套路拆点,把\((i,j)\)拆为两个点,在这两个点之间连边:一条边流量为\(1\),费用为\(a_{i,j}\),另一条边为流量为\(INF\),费用为\(0 ...

  5. 【费用流】【CODEVS】1227 方格取数2

    [算法]最小费用最大流(费用流) [题解] 费用流:http://www.cnblogs.com/onioncyc/p/6496532.html 本题构图: 在有限的k次行走中尽可能多的拿到数字,明显 ...

  6. codevs 1227 方格取数 2

    Description 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来, ...

  7. poj3422K方格取数——最大费用最大流

    题目:http://poj.org/problem?id=3422 最大费用最大流: 拆点,在自点之间连两条边,一条容量为1,边权为数字:一条容量为k-1,边权为0:表示可以走k次,只有一次能取到数字 ...

  8. HDU 1565&1569 方格取数系列(状压DP或者最大流)

    方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  9. LibreOJ #6007. 「网络流 24 题」方格取数 最小割 最大点权独立集 最大流

    #6007. 「网络流 24 题」方格取数 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

随机推荐

  1. 利用nginx泛域名解析配置二级域名和多域名

    利用nginx泛域名解析配置二级域名和多域名 网站的目录结构为 html ├── bbs └── www html为nginx的安装目录下默认的存放源代码的路径. bbs为论坛程序源代码路径 www为 ...

  2. SSM框架Web程序的流程(Spring SpringMVC Mybatis)

    SSM框架的Web程序主要用到了三个技术: Spring:用到了注解和自动装配,就是Spring的两个精髓IOC(反向控制)和 AOP(面向切面编程). SpringMVC:用到了MVC模型,将逻辑代 ...

  3. js指定标签的id只能添加不能删除

    <body> <form id="form1" runat="server"> <div> <input id=&qu ...

  4. MySQL自带information_schema数据库使用

    MySQL的information_schema数据库是什么,有什么作用? 大家在安装或使用MYSQL时,会发现除了自己安装的数据库以外,还有一个 information_schema数据库.info ...

  5. Cocos2d 初学基本知识

    1. 纹理(Texture) 游戏角色的图像文件在使用前必须解压缩,并转换成 iPhone 和 iPad 的 GPU 可以理解的 格式,同时要加载进 RAM(随机存储器),这样的图像称为纹理.GPU ...

  6. javascript动态添加一组input

    2013年12月18日 20:56:29 场景: 批量添加 友情链接 功能 每个友情链接记录有3个字段:名字(name),超链接(url),排序(order) 要求每次点击"添加" ...

  7. Java for LeetCode 029 Divide Two Integers

    Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...

  8. DP:炮兵阵地问题(POJ 1185)

    正确的打炮方式(大雾)(点我查看) 2015-08-21 问题是中文的,大家可以进去看看. 先说一个坑,这个问题我交了很多次,都没过,反正是WA到我烦了,都不知道哪里错了!!!怎么会有错,然后翻了一下 ...

  9. 解决java.lang.UnsupportedClassVersionError

    出现java.lang.UnsupportedClassVersionError 错误的原因,是因为我们使用高版本的JDK编译的Java class文件试图在较低版本的JVM上运行,所报的错误. 版本 ...

  10. java类初始化优先级

    父类静态变量.父类静态代码块.子类静态变量.子类静态代码块.父类非静态变量.父类非静态代码块.父类构造函数.子类非静态变量.子类非静态代码块.子类构造函数