暴力枚举 UVA 10976 Fractions Again?!
/*
x>=y, 1/x <= 1/y, 因此1/k - 1/y <= 1/y, 即y <= 2*k
*/
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <string>
#include <map>
#include <set>
#include <queue>
using namespace std; const int MAXN = 1e4 + ;
const int INF = 0x3f3f3f3f;
struct NODE
{
int x, y;
}node[MAXN]; int main(void) //UVA 10976 Fractions Again?!
{
//freopen ("UVA_10976.in", "r", stdin); int k;
while (scanf ("%d", &k) == )
{
int cnt = ;
for (int i=k+; i<=*k; ++i)
{
if ((i*k) % (i-k) == )
{
node[++cnt].x = (i*k) / (i-k);
node[cnt].y = i;
}
} printf ("%d\n", cnt);
for (int i=; i<=cnt; ++i)
{
printf ("1/%d = 1/%d + 1/%d\n", k, node[i].x, node[i].y);
}
} return ;
} /*
2
1/2 = 1/6 + 1/3
1/2 = 1/4 + 1/4
8
1/12 = 1/156 + 1/13
1/12 = 1/84 + 1/14
1/12 = 1/60 + 1/15
1/12 = 1/48 + 1/16
1/12 = 1/36 + 1/18
1/12 = 1/30 + 1/20
1/12 = 1/28 + 1/21
1/12 = 1/24 + 1/24
*/
暴力枚举 UVA 10976 Fractions Again?!的更多相关文章
- uva 10976 Fractions Again(简单枚举)
10976 Fractions Again It is easy to see that for every fraction in the form 1 k (k > 0), we can a ...
- UVA 10976 Fractions Again?!【暴力枚举/注意推导下/分子分母分开保存】
[题意]:给你一个数k,求所有使得1/k = 1/x + 1/y成立的x≥y的整数对. [分析]:枚举所有在区间[k+1, 2k]上的 y 即可,当 1/k - 1/y 的结果分子为1即为一组解. [ ...
- 暴力枚举 UVA 725 Division
题目传送门 /* 暴力:对于每一个数都判断,是否数字全都使用过一遍 */ #include <cstdio> #include <iostream> #include < ...
- uva 10976 fractions again(水题)——yhx
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAB3gAAAM+CAIAAAB31EfqAAAgAElEQVR4nOzdO7KtPJum69GEpAcVQQ ...
- Uva 10976 Fractions Again?!
直接暴力 没技巧 y应该从k+1开始循环,因为不然y-k<0的时候 你相当于(x*y) % (负数) 了. #include <iostream> using namespace s ...
- UVA.10986 Fractions Again (经典暴力)
UVA.10986 Fractions Again (经典暴力) 题意分析 同样只枚举1个,根据条件算出另外一个. 代码总览 #include <iostream> #include &l ...
- UVA 725 UVA 10976 简单枚举
UVA 725 题意:0~9十个数组成两个5位数(或0开头的四位数),要求两数之商等于输入的数据n.abcde/fghij=n. 思路:暴力枚举,枚举fghij的情况算出abcde判断是否符合题目条件 ...
- UVA.12716 GCD XOR (暴力枚举 数论GCD)
UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 ...
- 分数拆分(Fractions Again?!, UVa 10976)
题目链接:https://vjudge.net/problem/UVA-10976 It is easy to see that for every fraction in the form 1k(k ...
随机推荐
- 多线程 or 多进程 (转强力推荐)
在Unix上编程采用多线程还是多进程的争执由来已久,这种争执最常见到在C/S通讯中服务端并发技术 的选型上,比如WEB服务器技术中,Apache是采用多进程的(perfork模式,每客户连接对应一个进 ...
- 淘宝(阿里百川)手机客户端开发日记第六篇 Service详解(六)
Service和Thread的关系 不少初学者都可能会有这样的疑惑,Service和Thread到底有什么关系呢?什么时候应该用Service,什么时候又应该用Thread? 答案是Service和T ...
- unity StreamingAssets路径
原地址:http://blog.csdn.net/nateyang/article/details/8493791 我们在读写例如XML和TXT文件的时候,在电脑上和手机上路径不一致,造成了很多麻烦, ...
- 关于mac安装rails报错clang: error: unknown argument
文章都是从我的个人博客上转载过来的,大家可以点击我的个人博客. www.iwangzheng.com mac上安装rails的时候报错, 安装rails的在终端执行了一句命令: $sudo gem i ...
- 将服务器上的myql数据库导入本地数据库
文章是从我的个人博客上粘贴过来的, 大家也可以访问 www.iwangzheng.com 首先登录到服务器上,进入文件夹,我们这边的是m-cms $mysqldump -uroot mos > ...
- [OpenJudge 3063]罪犯问题
[OpenJudge 3063]罪犯问题 试题描述 一天,警官抓获了N个嫌犯,审问N个罪犯的途中,作为警长助手的你突然发现其中被确定为罪犯的K号人是你曾经出生入死的兄弟,你不能眼睁睁看着他被抓进牢里. ...
- [POJ1338]Ugly Numbers
[POJ1338]Ugly Numbers 试题描述 Ugly numbers are numbers whose only prime factors are 2, 3 or 5. The sequ ...
- [BZOJ4636]蒟蒻的数列
[BZOJ4636]蒟蒻的数列 试题描述 蒟蒻DCrusher不仅喜欢玩扑克,还喜欢研究数列 题目描述 DCrusher有一个数列,初始值均为0,他进行N次操作,每次将数列[a,b)这个区间中所有比k ...
- 删除右键ATI CATALYST(R) Control Center的方法
http://share.weiyun.com/c47530d3e44ea15b606d4ba6f1b00a28
- php中global与$GLOBALS的用法及区别
php中global 与 $GLOBALS[""] 差别 原本觉得global和$GLOBALS除了写法不一样觉得,其他都一样,可是在实际利用中发现2者的差别还是很大的! 先看下面 ...