BZOJ2154 Crash的数字表格 【莫比乌斯反演】
BZOJ2154 Crash的数字表格
Description
今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数。例如,LCM(6, 8) = 24。回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格。每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j)。一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12 4 20 看着这个表格,Crash想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当N和M很大时,Crash就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash只想知道表格里所有数的和mod 20101009的值。
Input
输入的第一行包含两个正整数,分别表示N和M。
Output
输出一个正整数,表示表格中所有数的和mod 20101009的值。
Sample Input
4 5
Sample Output
122
【数据规模和约定】
100%的数据满足N, M ≤ 10^7。
我也不知道为什么,常数卡了半天。。。
也不知是不是没有卡LL和int的常数。。。
反正后面卡过去了。。。
下面说正事。。。


#include<bits/stdc++.h>
using namespace std;
#define N 10000010
#define Mod 20101009
int n,m,ans=0,tot=0;
bool mark[N];
int pri[N],F[N],S[N];
void init(){
F[1]=1;
for(int i=2;i<=n;i++){
if(!mark[i])pri[++tot]=i,F[i]=1-i;
for(int j=1;j<=tot&&i*pri[j]<=n;j++){
mark[i*pri[j]]=1;
if(i%pri[j]==0)F[i*pri[j]]=F[i];
else F[i*pri[j]]=1ll*F[i]*F[pri[j]]%Mod;
}
}
for(int i=1;i<=n;i++)F[i]=(1ll*F[i]*i%Mod+F[i-1])%Mod;
for(int i=1;i<=m;i++)S[i]=(1ll*(i+1)*i/2)%Mod;
}
int main(){
scanf("%d%d",&n,&m);
if(n>m)swap(n,m);
init();
for(int i=1,j;i<=n;i=j+1){
j=min(n/(n/i),m/(m/i));
ans=(ans+1ll*(F[j]-F[i-1]+Mod)*S[n/i]%Mod*S[m/i]%Mod+Mod)%Mod;
}
printf("%d",(ans+Mod)%Mod);
return 0;
}
BZOJ2154 Crash的数字表格 【莫比乌斯反演】的更多相关文章
- bzoj2154: Crash的数字表格 莫比乌斯反演
题意:求\(\sum_{i=1}^n \sum_{j=1}^m\frac{i*j}{gcd(i,j)}\) 题解:\(ans=\sum_{i=1}^n\sum_{j=1}^m \frac{i*j}{g ...
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑Ny=1∑Mlim(x, ...
- 【bzoj2154】Crash的数字表格 莫比乌斯反演
题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, ...
- 【BZOJ】2154: Crash的数字表格 莫比乌斯反演
[题意]给定n,m,求Σlcm(i,j),1<=i<=n,1<=j<=m,n,m<=10^7. [算法]数论(莫比乌斯反演) [题解] $$ans=\sum_{i\leq ...
- BZOJ 2154 Crash的数字表格 ——莫比乌斯反演
求$\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)$ 枚举因数 $ans=\sum_{d<=n} F(d) * d$ $F(d)$表示给定范围内两两$\sum_{gcd(i, ...
- [国家集训队] Crash的数字表格 - 莫比乌斯反演,整除分块
考虑到\(lcm(i,j)=\frac{ij}{gcd(i,j)}\) \(\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{gcd(i,j)}\) \(\sum_{d=1}^{n} ...
- [bzoj2154]Crash的数字表格(mobius反演)
题意:$\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {lcm(i,j)} } $ 解题关键: $\sum\limits_{i = 1}^n {\sum\l ...
- 洛谷 - P1829 - Crash的数字表格 - 莫比乌斯反演
求: \(S(n,m)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\) 显然: \(S(n,m)=\sum\limits_{i=1}^{n}\ ...
随机推荐
- Gogeos安装
环境要求: Windows64,Go,minGW(统一64位) 1.安装geos 下载GEOS 3.3.8源码,解压后,按readme文件编译(基于VS2010的64位编译工具执行的nmake编译命令 ...
- 使用GEOquery下载GEO数据--转载
最近需要下载一大批GEO上的数据,问题是我要下载的Methylation数据根本就没有sra文件,换言之不能使用Aspera之类的数据进行下载.但是后来我发现了GEOquery这个不错的R包,不知道是 ...
- Delphi.format填充0
1. ]);// 一共8位数字不够的补零 2. 3. 4. 5.
- 【三小时学会Kubernetes!(五) 】完成整个架构
完成整个架构 现在我们学习了完成架构的所有必须的资源,因此这一节会非常快.图 22 中灰色的部分是需要做的事情.让我们从底部开始:部署 sa-logic 的部署. 图 22:当前应用程序状态 部署 S ...
- zabbix自动化运维学习笔记(服务器配置)
继上次博主整理的安装后,这次是配置步骤 首先打开zabbix的安装web地址 http://xx.xx.xx.xx/zabbix/setup.php xx.xx.xx.xx是服务器的IP地址 由 ...
- ASP.NET 4.5 MVC 4 无法运行在Windows2008的IIS7.0上显示404的解决方案
需要在web.config下加上这个 <system.webServer> <modules runAllManagedModulesForAllRequests="tru ...
- 创建一个最简单的SpringBoot应用
已经来实习了一段时间了,从开始接触到SpringBoot框架到现在一直都感觉SpringBoot框架实在是为我们带来了巨大遍历之处,之前一直在用并没有总结一下,现在有空从零开始写点东西,也算是对基础的 ...
- 【转】通过blktrace, debugfs分析磁盘IO
前几天微博上有同学问我磁盘util达到了100%时程序性能下降的问题,由于信息实在有限,我也没有办法帮太大的忙,这篇blog只是想给他列一下在磁盘util很高的时候如何通过blktrace+debug ...
- MyBatis的返回参数类型
MyBatis的返回参数类型分两种 1. 对应的分类为: 1.1.resultMap: 1.2.resultType: 2 .对应返回值类型: 2.1.resultMap:结果集 2.2.result ...
- day27 CRM delete& action& 嵌入CRM
课程目录:deleteactionpop up window嵌入crm项目 权限(未讲)学员交作业发邮件 代码路径:https://github.com/liyongsan/git_class/tre ...
