BZOJ2154 Crash的数字表格


Description

今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数。例如,LCM(6, 8) = 24。回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格。每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j)。一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12 4 20 看着这个表格,Crash想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当N和M很大时,Crash就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash只想知道表格里所有数的和mod 20101009的值。

Input

输入的第一行包含两个正整数,分别表示N和M。

Output

输出一个正整数,表示表格中所有数的和mod 20101009的值。

Sample Input

4 5

Sample Output

122
【数据规模和约定】
100%的数据满足N, M ≤ 10^7。


我也不知道为什么,常数卡了半天。。。
也不知是不是没有卡LL和int的常数。。。
反正后面卡过去了。。。
下面说正事。。。



#include<bits/stdc++.h>
using namespace std;
#define N 10000010
#define Mod 20101009
int n,m,ans=0,tot=0;
bool mark[N];
int pri[N],F[N],S[N];
void init(){
F[1]=1;
for(int i=2;i<=n;i++){
if(!mark[i])pri[++tot]=i,F[i]=1-i;
for(int j=1;j<=tot&&i*pri[j]<=n;j++){
mark[i*pri[j]]=1;
if(i%pri[j]==0)F[i*pri[j]]=F[i];
else F[i*pri[j]]=1ll*F[i]*F[pri[j]]%Mod;
}
}
for(int i=1;i<=n;i++)F[i]=(1ll*F[i]*i%Mod+F[i-1])%Mod;
for(int i=1;i<=m;i++)S[i]=(1ll*(i+1)*i/2)%Mod;
}
int main(){
scanf("%d%d",&n,&m);
if(n>m)swap(n,m);
init();
for(int i=1,j;i<=n;i=j+1){
j=min(n/(n/i),m/(m/i));
ans=(ans+1ll*(F[j]-F[i-1]+Mod)*S[n/i]%Mod*S[m/i]%Mod+Mod)%Mod;
}
printf("%d",(ans+Mod)%Mod);
return 0;
}

BZOJ2154 Crash的数字表格 【莫比乌斯反演】的更多相关文章

  1. bzoj2154: Crash的数字表格 莫比乌斯反演

    题意:求\(\sum_{i=1}^n \sum_{j=1}^m\frac{i*j}{gcd(i,j)}\) 题解:\(ans=\sum_{i=1}^n\sum_{j=1}^m \frac{i*j}{g ...

  2. [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)

    [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...

  3. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  4. [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)

    题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑N​y=1∑M​lim(x, ...

  5. 【bzoj2154】Crash的数字表格 莫比乌斯反演

    题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, ...

  6. 【BZOJ】2154: Crash的数字表格 莫比乌斯反演

    [题意]给定n,m,求Σlcm(i,j),1<=i<=n,1<=j<=m,n,m<=10^7. [算法]数论(莫比乌斯反演) [题解] $$ans=\sum_{i\leq ...

  7. BZOJ 2154 Crash的数字表格 ——莫比乌斯反演

    求$\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)$ 枚举因数 $ans=\sum_{d<=n} F(d) * d$ $F(d)$表示给定范围内两两$\sum_{gcd(i, ...

  8. [国家集训队] Crash的数字表格 - 莫比乌斯反演,整除分块

    考虑到\(lcm(i,j)=\frac{ij}{gcd(i,j)}\) \(\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{gcd(i,j)}\) \(\sum_{d=1}^{n} ...

  9. [bzoj2154]Crash的数字表格(mobius反演)

    题意:$\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {lcm(i,j)} } $ 解题关键: $\sum\limits_{i = 1}^n {\sum\l ...

  10. 洛谷 - P1829 - Crash的数字表格 - 莫比乌斯反演

    求: \(S(n,m)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\) 显然: \(S(n,m)=\sum\limits_{i=1}^{n}\ ...

随机推荐

  1. PMP第一章:引论

    项目是为创造独特的产品,服务或成果而进行的临时性的工作. 项目的临时性是指项目有明确的起点和终点. 项目旨在推动组织从一个状态(当前状态)转到另一个状态(将来状态),从而达成特定目标. 项目管理就是将 ...

  2. Kaggle 项目之 Digit Recognizer

    train.csv 和 test.csv 包含 1~9 的手写数字的灰度图片.每幅图片都是 28 个像素的高度和宽度,共 28*28=784 个像素点,每个像素值都在 0~255 之间. train. ...

  3. Moment.js的一些用法

    前记:项目开发用到了日历插件(Pikaday.js),同时也用到了Moment.js(日期处理类库) 1.subtract:减去,下面代码的意思是减去1天 this.yestdayStr = mome ...

  4. mina-deploy(3800🌟) 快速部署工具

    Mina  (3800

  5. 关于Mac上使用ideviceinstaller操作iPhoneXR等24位UDID设备报“ERROR: Invalid UDID specified”解决办法

    最近新申请了一台iPhone XR, 测试时发现使用ideviceinstaller命令老是报错: Jackeys-MacBook-Pro:~ jackey$ ideviceinstaller -u ...

  6. CentOS 6.3从自带的Pyhon版本

    本文介绍CentOS 6.3从自带的Pyhon版本是2.6升级到2.7.6的方法. 因为CentOS系统中旧版本的Python已被深度依赖,所以不能卸载原有的Python,只能全新安装. 1.下载Py ...

  7. (转载) jQuery页面加载初始化的3种方法

    jQuery 页面加载初始化的方法有3种 ,页面在加载的时候都会执行脚本,应该没什么区别,主要看习惯吧,本人觉得第二种方法最好,比较简洁. 第一种: $(document).ready(functio ...

  8. webapi在IIS发布后报Http 403.14 error

    服务器是Windows Server 2008 R2 Enterprise IIS6.1     解决方法,修改web.config文件   1.在<system.webServer>配置 ...

  9. WordCount-个人项目2

    我的这个WC程序实现了对txt文件中的数据的计数,算出程序中有多少单词.字符数.行数还有空格数.以及长度. 项目源代码参考:http://www.cnblogs.com/sunbuqiao/p/531 ...

  10. socket函数sendto与send的区别

    C:socket相关的sendto()函数简介 http://blog.csdn.net/flytiger_ouc/article/details/19634279 文中提到SOCK_DGRAM, S ...