TF随笔-8
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 10 09:35:04 2017
@author: myhaspl@myhaspl.com,http://blog.csdn.net/myhaspl
"""
#逻辑或
import tensorflow as tf
batch_size=10
w1=tf.Variable(tf.random_normal([2,6],stddev=1,seed=1))
w2=tf.Variable(tf.random_normal([6,1],stddev=1,seed=1))
b=tf.Variable(tf.zeros([6]),tf.float32)
x=tf.placeholder(tf.float32,shape=(None,2),name="x")
y=tf.placeholder(tf.float32,shape=(None,1),name="y")
h=tf.matmul(x,w1)+b
yo=tf.matmul(h,w2)
#损失函数计算差异平均值
cross_entropy=tf.reduce_mean(tf.abs(y-yo))
#反向传播
train_step=tf.train.AdamOptimizer(0.05).minimize(cross_entropy)
#生成样本
x_=[[0.,0.],[0.,1.],[1.,0.],[1.,1.]]
y_=[[0.],[1.],[1.],[1.]]
b_=tf.zeros([6])
with tf.Session() as sess:
#初始化变量
init_op=tf.global_variables_initializer()
sess.run(init_op)
print sess.run(w1)
print sess.run(w2)
#设定训练轮数
TRAINCOUNT=500
for i in range(TRAINCOUNT):
#开始训练
sess.run(train_step,feed_dict={x:x_,y:y_})
if i%10==0:
total_cross_entropy=sess.run(cross_entropy,feed_dict={x:x_,y:y_})
print("%d 次训练之后,损失:%g"%(i+1,total_cross_entropy))
print(sess.run(w1))
print(sess.run(w2))
#生成测试样本,仅进行前向传播验证:
testyo=sess.run(yo,feed_dict={x:[[0.,1.],[1.,1.]]})
myout=[int(testout>0.5) for testout in testyo]
print myout
(Initialize initial 1st moment vector)
v_0 <- 0 (Initialize initial 2nd moment vector)
t <- 0 (Initialize timestep)
The update rule for variable with gradient g uses an optimization described at the end of section2 of the paper:
t <- t + 1
lr_t <- learning_rate * sqrt(1 - beta2^t) / (1 - beta1^t)
m_t <- beta1 * m_{t-1} + (1 - beta1) * g
v_t <- beta2 * v_{t-1} + (1 - beta2) * g * g
variable <- variable - lr_t * m_t / (sqrt(v_t) + epsilon)
The default value of 1e-8 for epsilon might not be a good default in general. For example, when training an Inception network on ImageNet a current good choice is 1.0 or 0.1. Note that since AdamOptimizer uses the formulation just before Section 2.1 of the Kingma and Ba paper rather than the formulation in Algorithm 1, the "epsilon" referred to here is "epsilon hat" in the paper.
The sparse implementation of this algorithm (used when the gradient is an IndexedSlices object, typically because of tf.gather or an embedding lookup in the forward pass) does apply momentum to variable slices even if they were not used in the forward pass (meaning they have a gradient equal to zero). Momentum decay (beta1) is also applied to the entire momentum accumulator. This means that the sparse behavior is equivalent to the dense behavior (in contrast to some momentum implementations which ignore momentum unless a variable slice was actually used).
TF随笔-8的更多相关文章
- TF随笔-13
import tensorflow as tf a=tf.constant(5) b=tf.constant(3) res1=tf.divide(a,b) res2=tf.div(a,b) with ...
- TF随笔-11
#!/usr/bin/env python2 # -*- coding: utf-8 -*- import tensorflow as tf my_var=tf.Variable(0.) step=t ...
- TF随笔-10
#!/usr/bin/env python# -*- coding: utf-8 -*-import tensorflow as tf x = tf.constant(2)y = tf.constan ...
- TF随笔-9
计算累加 #!/usr/bin/env python2 # -*- coding: utf-8 -*-"""Created on Mon Jul 24 08:25:41 ...
- TF随笔-7
求平均值的函数 reduce_mean axis为1表示求行 axis为0表示求列 >>> xxx=tf.constant([[1., 10.],[3.,30.]])>> ...
- tf随笔-6
import tensorflow as tfx=tf.constant([-0.2,0.5,43.98,-23.1,26.58])y=tf.clip_by_value(x,1e-10,1.0)ses ...
- tf随笔-5
# -*- coding: utf-8 -*-import tensorflow as tfw1=tf.Variable(tf.random_normal([2,6],stddev=1))w2=tf. ...
- TF随笔-4
>>> import tensorflow as tf>>> a=tf.constant([[1,2],[3,4]])>>> b=tf.const ...
- TF随笔-3
>>> import tensorflow as tf>>> node1 = tf.constant(3.0, dtype=tf.float32)>>& ...
随机推荐
- 20145312 实验四《Andoid开发基础》
20145312 实验四<Andoid开发基础> 实验内容 1. 安装Android Studio 2. 运行安卓AVD模拟器 3. 使用Android运行出模拟手机并显示自己的学号 实验 ...
- linux ssh认证(公钥机)配置
一.产生背景 在实际工作中,linux集群需要自动化的管理,市面上较常见的自动化运维工具诸如ansible,puppet,saltstack:轻量级的有pssh系列,这其中大多数工具使用的前提就是集群 ...
- Spring中RestTemplate进行Http调用
Spring中的RestTemplate类源自spring-web,http调用中设置超时时间.设置连接池管理等非常重要,保证了系统的可用性,避免了长时间连接不上或者等待数据返回,拖垮系统. 现贴出工 ...
- hbase(二)hfile结构
HFile结构 截止hbase 1.0.2版本,hfile已经有3个版本,要深入了解hfile的话,还是要从第一个版本开始看起. hfile v1 Data Block:保存表中的数据,这部分可以被压 ...
- C# Nginx平滑加权轮询算法
代码很简单,但算法很经典,话不多说,直接上代码. public struct ServerConfig { /// <summary> /// 初始权重 /// </summary& ...
- Python学习札记(十七) 高级特性3 列表生成式
参考:列表生成式 Note 1.List Comprehensions,即列表生成式,是Python中内置的非常强大的list生成式. eg.生成一个列表:[1*1, 2*2, ..., 10*10] ...
- Dancing Links DLX
Dancing Links DLX Dancing Links 用来解精准覆盖问题. 精准覆盖问题有两种版本. 精准覆盖 : 给一个01矩阵,如何选出若干行,使得每列都有且仅有一个1. 可以求最少行数 ...
- spring boot 笔记--第三章
spring boot 笔记 第三章,使用Spring boot 构建系统: 强烈建议支持依赖管理的构建系统,Maven或Gradle 依赖管理: Spring Boot的每版本都会提供它支持的依赖列 ...
- 使用jsonp去访问跨域数据,回调使用数据
var foo = function (data) { console.log("foo", data)} var testJsonP = function () { $.ajax ...
- ThinkPHP开发笔记-前后端数据交互
此处就是 Controller 和 View 相互传数据. 1.Controller 向 View 的页面传数据.在控制器中把变量传递给模板,使用 assign 方法对模板变量赋值.例如: 在Cont ...