#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 10 09:35:04 2017

@author: myhaspl@myhaspl.com,http://blog.csdn.net/myhaspl
"""
#逻辑或
import tensorflow as tf

batch_size=10
w1=tf.Variable(tf.random_normal([2,6],stddev=1,seed=1))
w2=tf.Variable(tf.random_normal([6,1],stddev=1,seed=1))
b=tf.Variable(tf.zeros([6]),tf.float32)

x=tf.placeholder(tf.float32,shape=(None,2),name="x")
y=tf.placeholder(tf.float32,shape=(None,1),name="y")

h=tf.matmul(x,w1)+b
yo=tf.matmul(h,w2)

#损失函数计算差异平均值
cross_entropy=tf.reduce_mean(tf.abs(y-yo))
#反向传播
train_step=tf.train.AdamOptimizer(0.05).minimize(cross_entropy)

#生成样本

x_=[[0.,0.],[0.,1.],[1.,0.],[1.,1.]]
y_=[[0.],[1.],[1.],[1.]]
b_=tf.zeros([6])

with tf.Session() as sess:
    #初始化变量
    init_op=tf.global_variables_initializer()
    sess.run(init_op)
    print sess.run(w1)
    print sess.run(w2)

    #设定训练轮数
    TRAINCOUNT=500
    for i in range(TRAINCOUNT):
        #开始训练
        sess.run(train_step,feed_dict={x:x_,y:y_})
        if i%10==0:
            total_cross_entropy=sess.run(cross_entropy,feed_dict={x:x_,y:y_})
            print("%d 次训练之后,损失:%g"%(i+1,total_cross_entropy))
    print(sess.run(w1))
    print(sess.run(w2))

    #生成测试样本,仅进行前向传播验证:
    testyo=sess.run(yo,feed_dict={x:[[0.,1.],[1.,1.]]})
    myout=[int(testout>0.5) for testout in testyo]
    print myout

(Initialize initial 1st moment vector)
v_0 <- 0 (Initialize initial 2nd moment vector)
t <- 0 (Initialize timestep)

The update rule for variable with gradient g uses an optimization described at the end of section2 of the paper:

t <- t + 1
lr_t <- learning_rate * sqrt(1 - beta2^t) / (1 - beta1^t)

m_t <- beta1 * m_{t-1} + (1 - beta1) * g
v_t <- beta2 * v_{t-1} + (1 - beta2) * g * g
variable <- variable - lr_t * m_t / (sqrt(v_t) + epsilon)

The default value of 1e-8 for epsilon might not be a good default in general. For example, when training an Inception network on ImageNet a current good choice is 1.0 or 0.1. Note that since AdamOptimizer uses the formulation just before Section 2.1 of the Kingma and Ba paper rather than the formulation in Algorithm 1, the "epsilon" referred to here is "epsilon hat" in the paper.

The sparse implementation of this algorithm (used when the gradient is an IndexedSlices object, typically because of tf.gather or an embedding lookup in the forward pass) does apply momentum to variable slices even if they were not used in the forward pass (meaning they have a gradient equal to zero). Momentum decay (beta1) is also applied to the entire momentum accumulator. This means that the sparse behavior is equivalent to the dense behavior (in contrast to some momentum implementations which ignore momentum unless a variable slice was actually used).


TF随笔-8的更多相关文章

  1. TF随笔-13

    import tensorflow as tf a=tf.constant(5) b=tf.constant(3) res1=tf.divide(a,b) res2=tf.div(a,b) with ...

  2. TF随笔-11

    #!/usr/bin/env python2 # -*- coding: utf-8 -*- import tensorflow as tf my_var=tf.Variable(0.) step=t ...

  3. TF随笔-10

    #!/usr/bin/env python# -*- coding: utf-8 -*-import tensorflow as tf x = tf.constant(2)y = tf.constan ...

  4. TF随笔-9

    计算累加 #!/usr/bin/env python2 # -*- coding: utf-8 -*-"""Created on Mon Jul 24 08:25:41 ...

  5. TF随笔-7

    求平均值的函数 reduce_mean axis为1表示求行 axis为0表示求列 >>> xxx=tf.constant([[1., 10.],[3.,30.]])>> ...

  6. tf随笔-6

    import tensorflow as tfx=tf.constant([-0.2,0.5,43.98,-23.1,26.58])y=tf.clip_by_value(x,1e-10,1.0)ses ...

  7. tf随笔-5

    # -*- coding: utf-8 -*-import tensorflow as tfw1=tf.Variable(tf.random_normal([2,6],stddev=1))w2=tf. ...

  8. TF随笔-4

    >>> import tensorflow as tf>>> a=tf.constant([[1,2],[3,4]])>>> b=tf.const ...

  9. TF随笔-3

    >>> import tensorflow as tf>>> node1 = tf.constant(3.0, dtype=tf.float32)>>& ...

随机推荐

  1. 强大的jQuery选择器 平时用的太少了 下次要先来看看

  2. [翻译]解读CSS中的长度单位

    测量,在WEB设计上是非常重要的.在CSS中有至少10种不同的测量单位.每种单位都有其独特的作用,使用它们,可以使页面,在各种设备上,很好的工作.一旦你熟悉了所有这些单位,你可以更准确地设定元素的大小 ...

  3. v4l2的学习建议和流程解析

    v4l2,一开始听到这个名词的时候,以为又是一个很难很难的模块,涉及到视频的处理,后来在网上各种找资料后,才发现其实v4l2已经分装好了驱动程序,只要我们根据需要调用相应的接口和函数,从而实现视频的获 ...

  4. Maven 一段时间知识小结

    二种打包命令生成后的jar包比较 1.clean install -P dev 2.clean package  -Dmaven.test.skip=true -P dev //clean packa ...

  5. js 光标选中 操作

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. centos添加php及mysql环境变量

    在Linux CentOS系统上安装完php和MySQL后,为了使用方便,需要将php和mysql命令加到系统命令中,如果在没有添加到环境变量之前,执行 “php -v”命令查看当前php版本信息时时 ...

  7. 利用hash构建HTML切换

    在Web App和Hybrid App横行的时代,为了拥有更好的用户体验,单页面应用顺势而生,单页面应用简称`SPA`,即Single Page Application,就是只有一个HTML页面的应用 ...

  8. form组件的验证

    django 的form组件可以实现自定义的验证规则. 创建基于Form的类,在类中创建字段,定义规则. 创建该类的对象,并将待验证的数据传入,使用is_valid()函数. is_valid()函数 ...

  9. spring mvc:内部资源视图解析器2(注解实现)@Controller/@RequestMapping

    spring mvc:内部资源视图解析器2(注解实现)  @Controller/@RequestMapping 访问地址: http://localhost:8080/guga2/hello/goo ...

  10. Python 字典的一键多值,即一个键对应多个值

    转自:http://blog.csdn.net/houyj1986/article/details/22624981 #encoding=utf-8 print '中国' #字典的一键多值 print ...