Petrozavodsk Summer Training Camp 2017

Problem A. Connectivity

题目描述:有\(n\)个点,现不断地加边。每条边有一种颜色,如果一个点对\((a, b)\),满足\(a=b\)或对于每一种颜色的子图(图中只有该种颜色的边),\(a, b\)总是连通,则该点对称为好连通。求出每加一条边,好连通的点对数。

solution
每个子图用并查集维护连通块,并且用\(vector\)记录每个连通块的点,便于之后进行答案的统计,合并时启发式合并即可。
每种颜色生成一个\(hash\)值,每个点记录一个\(hash\)值,表示在每个子图中是属于哪个并查集,若两个点的\(hash\)值相同,则认为它们是好连通。

时间复杂度:\(O(mlogn)\)(常数比较大)

Problem B. Hotter-colder

Problem C. Painting

题目描述:有连续\(n\)个,每个点开始时都没有颜色,现在每次选择一个连续的区间,然后将这个区间涂成一种颜色,使得最终变成目标的样子。颜色有\(m\)种,每种颜色至少出现一次,涂色也只能涂\(m\)次,每次涂色的花费为区间长度。问总花费的最大值。

solution
可以先预处理出每种颜色的最小涂色区间,由于数据的特殊性,这些区间是不相交的,只可能是相离或包含。这样就可以按嵌套关系将区间分成很多层,必须先涂外层,再涂内层。对于同一层的区间,再分成很多段,每一段是连续的相邻的区间,每一段用\(dp\)来确定如何涂色,答案就是全部加起来的值。

时间复杂度:\(O(n^2)\)

Problem D. Ones

题目描述:定义一种1-expressions \(E ::= 1 | E+E | E*E | (E+E) | (E*E)\),给出一个数\(k\),用一个不多于\(100\)个\(1\)的表达式,使得答案为\(k\)。

solution
偶数时除于二,奇数时减一。

时间复杂度:\(O(logk)\)(每次询问)

Problem E. Seats

Problem F. Ants

Problem G. Permutation

题目描述:给出一个\(n\)排列\(p_i\),将其分成两个子序列,使得一个子序列递增,另一个递减。或无解。

solution
贪心。假设枚举到第\(i\)个数,如果\(p_i\)小于递增序列最后一个数,则扔进递减序列,若大于递减序列最后一个数,则扔进递增序列,若两个条件都满足,则无解。如果是介于两者之间,则考虑\(p_{i+1}\),若\(p_{i+1}>p_i\),则扔进递增序列,否则扔进递减序列。

时间复杂度:\(O(n)\)(每次询问)

Problem H. Primes

题目描述:定义\(\pi (x, y)\)表示能同时整除\(x, y\)的质数个数。给出\((a, b)\),求出\(\sum_{a \leq x < y \leq b} \pi(x, y)\)

solution
答案为\(\sum_{d} \left \lfloor \frac{b}{d} \right \rfloor - \left \lfloor \frac{a-1}{d} \right \rfloor\),\(d\)为质数。然后其实对于不同的\(d\),里面的值也可能一样,可以将值一样的\(d\)一起算,也就是跳着跳着算。

时间复杂度:\(O(log^2n)\) (每次询问)

Problem I. Vertex covers

Problem J. Scheduling

题目描述:有\(m\)个线程,有\(n\)个需要执行的程序,每个程序需要在时刻\(p_i\)到\(k_i\)内执行,执行时间为\(c_i\),每条程序可以随意暂停,跳转线程,但同一线程同一时刻只能执行一条程序。问是否能执行所有程序。

solution
将时刻拆分成若干个区间,每个区间连向汇点,流量为区间长度,每个程序连向源点,流量为程序的执行时间,然后每个程序连向所在的区间。跑一遍网络流就可以了。

时间复杂度:\(O(n^2m)\)

Problem K. Shufe

题目描述:有\(2^n\)张牌,有一种洗牌的方法:1、如果只有两张牌,则交换它们。2、将牌分成上下两堆,交换两堆牌,然后每堆牌递归操作。问洗\(t\)次牌后的顺序。

solution
显然,洗一次牌后所有牌会调转,再洗一次就会变回原样。

时间复杂度:\(O(2^n)\)

Petrozavodsk Summer Training Camp 2017的更多相关文章

  1. Petrozavodsk Summer Training Camp 2017 Day 9

    Petrozavodsk Summer Training Camp 2017 Day 9 Problem A. Building 题目描述:给出一棵树,在树上取出一条简单路径,使得该路径的最长上升子序 ...

  2. 【模拟退火】Petrozavodsk Winter Training Camp 2017 Day 1: Jagiellonian U Contest, Monday, January 30, 2017 Problem F. Factory

    让你在平面上取一个点,使得其到给定的所有点的距离和最小. 就是“费马点”. 模拟退火……日后学习一下,这是从网上扒的,先存下. #include<iostream> #include< ...

  3. 【动态规划】【二分】Petrozavodsk Winter Training Camp 2017 Day 1: Jagiellonian U Contest, Monday, January 30, 2017 Problem B. Dissertation

    题意: 给定S1串,长度100w,S2串,长度1k.问它俩的LCS. f(i,j)表示S2串前i个字符,LCS为j时,最少需要的S1串的前缀长度.转移的时候,枚举下一个字符在S1的位置即可.(可以预处 ...

  4. 【二分】Petrozavodsk Winter Training Camp 2017 Day 1: Jagiellonian U Contest, Monday, January 30, 2017 Problem A. The Catcher in the Rye

    一个区域,垂直分成三块,每块有一个速度限制,问你从左下角跑到右上角的最短时间. 将区域看作三块折射率不同的介质,可以证明,按照光路跑时间最短. 于是可以二分第一个入射角,此时可以推出射到最右侧边界上的 ...

  5. 2015 UESTC Winter Training #7【2010-2011 Petrozavodsk Winter Training Camp, Saratov State U Contest】

    2015 UESTC Winter Training #7 2010-2011 Petrozavodsk Winter Training Camp, Saratov State U Contest 据 ...

  6. 2015-2016 Petrozavodsk Winter Training Camp, Nizhny Novgorod SU Contest (5/9)

    2015-2016 Petrozavodsk Winter Training Camp, Nizhny Novgorod SU Contest B. Forcefield 题意 给你一维平面上n个镜子 ...

  7. Petrozavodsk Winter Training Camp 2018

    Petrozavodsk Winter Training Camp 2018 Problem A. Mines 题目描述:有\(n\)个炸弹放在\(x\)轴上,第\(i\)个位置为\(p_i\),爆炸 ...

  8. 2014-2015 Petrozavodsk Winter Training Camp, Contest.58 (Makoto rng_58 Soejima contest)

    2014-2015 Petrozavodsk Winter Training Camp, Contest.58 (Makoto rng_58 Soejima contest) Problem A. M ...

  9. 【推导】【数学期望】【冒泡排序】Petrozavodsk Winter Training Camp 2018 Day 5: Grand Prix of Korea, Sunday, February 4, 2018 Problem C. Earthquake

    题意:两地之间有n条不相交路径,第i条路径由a[i]座桥组成,每座桥有一个损坏概率,让你确定一个对所有桥的检测顺序,使得检测所需的总期望次数最小. 首先,显然检测的时候,是一条路径一条路径地检测,跳跃 ...

随机推荐

  1. 【Linux】无法将 Ethernet0 连接到虚拟网络“VMnet8”

    Linux安装centos之后,可能会出现ipconfig命令之后没有看到eth0信息,只有lo.log日志包的错为:无法将 Ethernet0 连接到虚拟网络“VMnet8” 解决办法有: 1.在虚 ...

  2. [六]SpringBoot 之 连接数据库(mybatis)

    在进行配置之前首先要了解springboot是如何使用纯java代码方式初始化一个bean的 以前的版本是在xml中使用beans标签,在其里面配置bean,那么纯Java代码怎么实现呢? 答案就是使 ...

  3. P3386 【模板】二分图匹配

    题目背景 二分图 题目描述 给定一个二分图,结点个数分别为n,m,边数为e,求二分图最大匹配数 输入输出格式 输入格式: 第一行,n,m,e 第二至e+1行,每行两个正整数u,v,表示u,v有一条连边 ...

  4. 【比赛】HNOI2018 寻宝游戏

    考试的时候就拿了30points滚粗了 听说myy对这题的倒推做法很无奈,官方题解在此 正解思路真的很巧妙,也说的很清楚了 就是分别考虑每一位,会发现题解中的那个性质,然后把询问的二进制数按照排序后的 ...

  5. struts2(s2-052)远程命令执行漏洞复现

    漏洞描述: 2017年9月5日,Apache Struts发布最新安全公告,Apache Struts2的REST插件存在远程代码执行的高危漏洞,该漏洞由lgtm.com的安全研究员汇报,漏洞编号为C ...

  6. 解题:CTSC 2017 吉夫特

    题面 首先有个结论:$C_n^m$为奇数当且仅当$m$是$n$的一个子集 于是从后往前推,记录每个数出现的位置,然后对每个位置枚举子集统计在它后面的贡献即可 #include<cstdio> ...

  7. 【SQL优化】MySQL官网中可优化的层次结构

    正如上一篇中我翻译的那篇文章,关于MySQL数据库优化的宏观介绍,了解到了从大体上来讲,优化MySQL可以从3个角度来讲.那么这一篇文章,则从一个个优化点出发,统计出究竟有多少个地方我们可以来优化My ...

  8. Tensorboard教程:显示计算图中节点信息

    Tensorboard显示计算图节点信息 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 强烈推荐Tensorflow实战Google深度学习框架 实验平台: Tensorflow1 ...

  9. base64解码

    网络传输经常用base64编码的数据,因此我们需要将其解码成正常字符集合. base64.h #ifdef __cplusplus extern "C" { #endif char ...

  10. Linux下如何卸载软件(Debian系)

    说明:此方法适用于Debian.Ubuntu等带apt工具的操作系统. 步骤: 1.首先我们需要知道将要卸载的软件名称,比如我现在打算卸载tightvncserver,但是如果你不确定名称,没关系,可 ...