Reference counted objects
Reference counted objects · netty/netty Wiki https://github.com/netty/netty/wiki/Reference-counted-objects
Since Netty version 4, the life cycle of certain objects are managed by their reference counts, so that Netty can return them (or their shared resources) to an object pool (or an object allocator) as soon as it is not used anymore. Garbage collection and reference queues do not provide such efficient real-time guarantee of unreachability while reference-counting provides an alternative mechanism at the cost of slight inconvenience.
ByteBuf is the most notable type which takes advantage of reference counting to improve the allocation and deallocation performance, and this page will explain how reference counting in Netty works using ByteBuf.
Basics of reference counting
The initial reference count of a new reference-counted object is 1:
ByteBuf buf = ctx.alloc().directBuffer();
assert buf.refCnt() == 1;
When you release the reference-counted object, its reference count is decreased by 1. If the reference count reaches at 0, the reference-counted object is deallocated or returned to the object pool it came from:
assert buf.refCnt() == 1;
// release() returns true only if the reference count becomes 0.
boolean destroyed = buf.release();
assert destroyed;
assert buf.refCnt() == 0;
Dangling reference
Attempting to access the reference-counted object whose reference count is 0 will trigger an IllegalReferenceCountException:
assert buf.refCnt() == 0;
try {
buf.writeLong(0xdeadbeef);
throw new Error("should not reach here");
} catch (IllegalReferenceCountExeception e) {
// Expected
}
Increasing the reference count
A reference count can also be incremented via the retain() operation as long as it is not destroyed yet:
ByteBuf buf = ctx.alloc().directBuffer();
assert buf.refCnt() == 1; buf.retain();
assert buf.refCnt() == 2; boolean destroyed = buf.release();
assert !destroyed;
assert buf.refCnt() == 1;
Who destroys it?
The general rule of thumb is that the party who accesses a reference-counted object lastly is responsible for the destruction of the reference-counted object. More specifically:
- If a [sending] component is supposed to pass a reference-counted object to another [receiving] component, the sending component usually does not need to destroy it but defers that decision to the receiving component.
- If a component consumes a reference-counted object and knows nothing else will access it anymore (i.e., does not pass along a reference to yet another component), the component should destroy it.
Here is a simple example:
public ByteBuf a(ByteBuf input) {
input.writeByte(42);
return input;
}
public ByteBuf b(ByteBuf input) {
try {
output = input.alloc().directBuffer(input.readableBytes() + 1);
output.writeBytes(input);
output.writeByte(42);
return output;
} finally {
input.release();
}
}
public void c(ByteBuf input) {
System.out.println(input);
input.release();
}
public void main() {
...
ByteBuf buf = ...;
// This will print buf to System.out and destroy it.
c(b(a(buf)));
assert buf.refCnt() == 0;
}
| Action | Who should release? | Who released? |
|---|---|---|
1. main() creates buf |
buf→main() |
|
2. main() calls a() with buf |
buf→a() |
|
3. a() returns buf merely. |
buf→main() |
|
4. main() calls b() with buf |
buf→b() |
|
5. b() returns the copy of buf |
buf→b(), copy→main() |
b() releases buf |
6. main() calls c() with copy |
copy→c() |
|
7. c() swallows copy |
copy→c() |
c() releases copy |
Derived buffers
ByteBuf.duplicate(), ByteBuf.slice() and ByteBuf.order(ByteOrder) create a derived buffer which shares the memory region of the parent buffer. A derived buffer does not have its own reference count but shares the reference count of the parent buffer.
ByteBuf parent = ctx.alloc().directBuffer();
ByteBuf derived = parent.duplicate(); // Creating a derived buffer does not increase the reference count.
assert parent.refCnt() == 1;
assert derived.refCnt() == 1;
In contrast, ByteBuf.copy() and ByteBuf.readBytes(int) are not derived buffers. The returned ByteBufis allocated will need to be released.
Note that a parent buffer and its derived buffers share the same reference count, and the reference count does not increase when a derived buffer is created. Therefore, if you are going to pass a derived buffer to other component of your application, you'll have to call retain() it first.
ByteBuf parent = ctx.alloc().directBuffer(512);
parent.writeBytes(...); try {
while (parent.isReadable(16)) {
ByteBuf derived = parent.readSlice(16);
derived.retain();
process(derived);
}
} finally {
parent.release();
}
... public void process(ByteBuf buf) {
...
buf.release();
}
ByteBufHolder interface
Sometimes, a ByteBuf is contained by a buffer holder, such as DatagramPacket, HttpContent, and WebSocketframe. Those types extend a common interface called ByteBufHolder.
A buffer holder shares the reference count of the buffer it contains, just like a derived buffer.
Reference-counting in ChannelHandler
Inbound messages
When an event loop reads data into a ByteBuf and triggers a channelRead() event with it, it is the responsibility of the ChannelHandler in the corresponding pipeline to release the buffer. Therefore, the handler that consumes the received data should call release() on the data in its channelRead()handler method:
public void channelRead(ChannelHandlerContext ctx, Object msg) {
ByteBuf buf = (ByteBuf) msg;
try {
...
} finally {
buf.release();
}
}
As explained in the 'Who destroys?' section of this document, if your handler passes the buffer (or any reference-counted object) to the next handler, you don't need to release it:
public void channelRead(ChannelHandlerContext ctx, Object msg) {
ByteBuf buf = (ByteBuf) msg;
...
ctx.fireChannelRead(buf);
}
Note that ByteBuf isn't the only reference-counted type in Netty. If you are dealing with the messages generated by decoders, it is very likely that the message is also reference-counted:
// Assuming your handler is placed next to `HttpRequestDecoder`
public void channelRead(ChannelHandlerContext ctx, Object msg) {
if (msg instanceof HttpRequest) {
HttpRequest req = (HttpRequest) msg;
...
}
if (msg instanceof HttpContent) {
HttpContent content = (HttpContent) msg;
try {
...
} finally {
content.release();
}
}
}
If you are in doubt or you want to simplify releasing the messages, you can use ReferenceCountUtil.release():
public void channelRead(ChannelHandlerContext ctx, Object msg) {
try {
...
} finally {
ReferenceCountUtil.release(msg);
}
}
Alternatively, you could consider extending SimpleChannelHandler which calls ReferenceCountUtil.release(msg) for all messages you receive.
Outbound messages
Unlike inbound messages, outbound messages are created by your application, and it is the responsibility of Netty to release these after writing them out to the wire. However, the handlers that intercept your write requests should make sure to release any intermediary objects properly. (e.g. encoders)
// Simple-pass through
public void write(ChannelHandlerContext ctx, Object message, ChannelPromise promise) {
System.err.println("Writing: " + message);
ctx.write(message, promise);
} // Transformation
public void write(ChannelHandlerContext ctx, Object message, ChannelPromise promise) {
if (message instanceof HttpContent) {
// Transform HttpContent to ByteBuf.
HttpContent content = (HttpContent) message;
try {
ByteBuf transformed = ctx.alloc().buffer();
....
ctx.write(transformed, promise);
} finally {
content.release();
}
} else {
// Pass non-HttpContent through.
ctx.write(message, promise);
}
}
Troubleshooting buffer leaks
The disadvantage of reference counting is that it is easy to leak the reference-counted objects. Because JVM is not aware of the reference counting Netty implements, it will automatically GC them once they become unreachable even if their reference counts are not zero. An object once garbage collected cannot be resurrected, and thus cannot be returned to the pool it came from and thus will produce memory leak.
Fortunately, despite its difficulty of finding leaks, Netty will by default sample about 1% of buffer allocations to check if there is a leak in your application. In case of leak, you will find the following log message:
LEAK: ByteBuf.release() was not called before it's garbage-collected. Enable advanced leak reporting to find out where the leak occurred. To enable advanced leak reporting, specify the JVM option '-Dio.netty.leakDetectionLevel=advanced' or call ResourceLeakDetector.setLevel()
Relaunch your application with the JVM option mentioned above, then you'll see the recent locations of your application where the leaked buffer was accessed. The following output shows a leak from our unit test (XmlFrameDecoderTest.testDecodeWithXml()):
Running io.netty.handler.codec.xml.XmlFrameDecoderTest
15:03:36.886 [main] ERROR io.netty.util.ResourceLeakDetector - LEAK: ByteBuf.release() was not called before it's garbage-collected.
Recent access records: 1
#1:
io.netty.buffer.AdvancedLeakAwareByteBuf.toString(AdvancedLeakAwareByteBuf.java:697)
io.netty.handler.codec.xml.XmlFrameDecoderTest.testDecodeWithXml(XmlFrameDecoderTest.java:157)
io.netty.handler.codec.xml.XmlFrameDecoderTest.testDecodeWithTwoMessages(XmlFrameDecoderTest.java:133)
...
Created at:
io.netty.buffer.UnpooledByteBufAllocator.newDirectBuffer(UnpooledByteBufAllocator.java:55)
io.netty.buffer.AbstractByteBufAllocator.directBuffer(AbstractByteBufAllocator.java:155)
io.netty.buffer.UnpooledUnsafeDirectByteBuf.copy(UnpooledUnsafeDirectByteBuf.java:465)
io.netty.buffer.WrappedByteBuf.copy(WrappedByteBuf.java:697)
io.netty.buffer.AdvancedLeakAwareByteBuf.copy(AdvancedLeakAwareByteBuf.java:656)
io.netty.handler.codec.xml.XmlFrameDecoder.extractFrame(XmlFrameDecoder.java:198)
io.netty.handler.codec.xml.XmlFrameDecoder.decode(XmlFrameDecoder.java:174)
io.netty.handler.codec.ByteToMessageDecoder.callDecode(ByteToMessageDecoder.java:227)
io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:140)
io.netty.channel.ChannelHandlerInvokerUtil.invokeChannelReadNow(ChannelHandlerInvokerUtil.java:74)
io.netty.channel.embedded.EmbeddedEventLoop.invokeChannelRead(EmbeddedEventLoop.java:142)
io.netty.channel.DefaultChannelHandlerContext.fireChannelRead(DefaultChannelHandlerContext.java:317)
io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:846)
io.netty.channel.embedded.EmbeddedChannel.writeInbound(EmbeddedChannel.java:176)
io.netty.handler.codec.xml.XmlFrameDecoderTest.testDecodeWithXml(XmlFrameDecoderTest.java:147)
io.netty.handler.codec.xml.XmlFrameDecoderTest.testDecodeWithTwoMessages(XmlFrameDecoderTest.java:133)
...
If you use Netty 5 or above, an additional information is provided to help you find which handler handled the leaked buffer lastly. The following example shows that the leaked buffer was handled by the handler whose name is EchoServerHandler#0 and then garbage-collected, which means it is likely that EchoServerHandler#0 forgot to release the buffer:
12:05:24.374 [nioEventLoop-1-1] ERROR io.netty.util.ResourceLeakDetector - LEAK: ByteBuf.release() was not called before it's garbage-collected.
Recent access records: 2
#2:
Hint: 'EchoServerHandler#0' will handle the message from this point.
io.netty.channel.DefaultChannelHandlerContext.fireChannelRead(DefaultChannelHandlerContext.java:329)
io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:846)
io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:133)
io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:485)
io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:452)
io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:346)
io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:794)
java.lang.Thread.run(Thread.java:744)
#1:
io.netty.buffer.AdvancedLeakAwareByteBuf.writeBytes(AdvancedLeakAwareByteBuf.java:589)
io.netty.channel.socket.nio.NioSocketChannel.doReadBytes(NioSocketChannel.java:208)
io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:125)
io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:485)
io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:452)
io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:346)
io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:794)
java.lang.Thread.run(Thread.java:744)
Created at:
io.netty.buffer.UnpooledByteBufAllocator.newDirectBuffer(UnpooledByteBufAllocator.java:55)
io.netty.buffer.AbstractByteBufAllocator.directBuffer(AbstractByteBufAllocator.java:155)
io.netty.buffer.AbstractByteBufAllocator.directBuffer(AbstractByteBufAllocator.java:146)
io.netty.buffer.AbstractByteBufAllocator.ioBuffer(AbstractByteBufAllocator.java:107)
io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:123)
io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:485)
io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:452)
io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:346)
io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:794)
java.lang.Thread.run(Thread.java:744)
Leak detection levels
There are currently 4 levels of leak detection:
DISABLED- disables leak detection completely. Not recommended.SIMPLE- tells if there is a leak or not for 1% of buffers. Default.ADVANCED- tells where the leaked buffer was accessed for 1% of buffers.PARANOID- Same withADVANCEDexcept that it's for every single buffer. Useful for automated testing phase. You could fail the build if the build output contains 'LEAK:'.
You can specify the leak detection level as a JVM option -Dio.netty.leakDetection.level
java -Dio.netty.leakDetection.level=advanced ...
NOTE: This property used to be called io.netty.leakDetectionLevel.
Best practices to avoid leaks
- Run your unit tests and integration tests at
PARANOIDleak detection level, as well as atSIMPLElevel. - Canary your application before rolling out to the entire cluster at
SIMPLElevel for a reasonably long time to see if there's a leak. - If there is a leak, canary again at
ADVANCEDlevel to get some hints about where the leak is coming from. - Do not deploy an application with a leak to the entire cluster.
Fixing leaks in unit tests
It is very easy to forget to release a buffer or a message in a unit test. It will generate a leak warning, but it does not necessarily mean that your application has a leak. Instead of wrapping your unit tests with try-finally blocks to release all buffers, you can use ReferenceCountUtil.releaseLater() utility method:
import static io.netty.util.ReferenceCountUtil.*; @Test
public void testSomething() throws Exception {
// ReferenceCountUtil.releaseLater() will keep the reference of buf,
// and then release it when the test thread is terminated.
ByteBuf buf = releaseLater(Unpooled.directBuffer(512));
...
}
External Links:
Why do we need to manually handle reference counting for Netty ByteBuf if JVM GC is still in place?
Buffer ownership in Netty 4: How is buffer life-cycle managed?
Reference counted objects的更多相关文章
- netty 引用计数对象(reference counted objects)
[Netty官方文档翻译]引用计数对象(reference counted objects) http://damacheng009.iteye.com/blog/2013657
- 【Netty官方文档翻译】引用计数对象(reference counted objects)
知乎有关于引用计数和垃圾回收GC两种方式的详细讲解 https://www.zhihu.com/question/21539353 原文出处:http://netty.io/wiki/referenc ...
- Java programming language does not use call by reference for objects!
Instead, object references are passed by value! A method cannot modify a parameter of a primitive ty ...
- C#高性能TCP服务的多种实现方式
哎~~ 想想大部分园友应该对 "高性能" 字样更感兴趣,为了吸引眼球所以标题中一定要突出,其实我更喜欢的标题是<猴赛雷,C#编写TCP服务的花样姿势!>. 本篇文章的主 ...
- netty5 HTTP协议栈浅析与实践
一.说在前面的话 前段时间,工作上需要做一个针对视频质量的统计分析系统,各端(PC端.移动端和 WEB端)将视频质量数据放在一个 HTTP 请求中上报到服务器,服务器对数据进行解析.分拣后从不同的 ...
- C#高性能TCP服务
C#高性能TCP服务 哎~~ 想想大部分园友应该对 "高性能" 字样更感兴趣,为了吸引眼球所以标题中一定要突出,其实我更喜欢的标题是<猴赛雷,C#编写TCP服务的花样姿势!& ...
- C# 高性能 TCP 服务的多种实现方式
哎~~ 想想大部分园友应该对 "高性能" 字样更感兴趣,为了吸引眼球所以标题中一定要突出,其实我更喜欢的标题是<猴赛雷,C# 编写 TCP 服务的花样姿势!>. 本篇文 ...
- Let's do our own full blown HTTP server with Netty--转载
原文地址:http://adolgarev.blogspot.com/2013/12/lets-do-our-own-full-blown-http-server.html Sometimes ser ...
- SWIG 3 中文手册——6. SWIG 和 C++
目录 6 SWIG 和 C++ 6.1 关于包装 C++ 6.2 方法 6.3 支持的 C++ 功能 6.4 命令行选项与编译 6.5.1 代理类的构造 6.5.2 代理类中的资源管理 6.5.3 语 ...
随机推荐
- 使用eclipse进行web开发的3个lib文件夹
1.右击project>Build Path>Configure Build Path(一般是在你的项目文件夹中手动创建一个lib文件夹,里面设置若干子文件夹存放不同的jar包,然后通过C ...
- 2014圣诞节一款纯css3实现的雪人动画特效
在2014年的圣诞节,爱编程小编给大家分分享一款纯css3实现的雪人动画特效.该实例实现一个雪人跳动的特效,效果图如下: 在线预览 源码下载 实现的代码. html代码: <span cla ...
- fontDialog-字体对话框和colorDialog-颜色对话框
private void button1_Click(object sender, EventArgs e) { DialogResult dr = fontDialog1.ShowDialog(); ...
- Gogs http和ssh地址显示localhost的问题
问题描述: 如下图所示HTTP和SSH地址显示的是localhost而不是对应的域名或地址. 解决方案: 按以下方法修改Gogs配置文件并重启服务器 域名问题 RUN_USER = git DOMAI ...
- C++ const关键字修饰引用
//const修饰引用的两种用法 #include<iostream> using namespace std; struct Teacher{ ]; int age; }; void S ...
- JAVA中有一个特殊的类: Object
JAVA中有一个特殊的类: Object.它是JAVA体系中所有类的父类(直接父类或者间接父类). 此类中的方法可以使所的类均继承. 以下介绍的三种方法属于Object: (1) finalize方法 ...
- 【BZOJ】1079: [SCOI2008]着色方案(dp+特殊的技巧)
http://www.lydsy.com/JudgeOnline/problem.php?id=1079 只能想到5^15的做法...........................果然我太弱. 其实 ...
- 开源 java CMS - FreeCMS2.2 建站向导
项目地址:http://www.freeteam.cn/ 建站向导 为了方便用户创建网站,系统提供了建站向导功能. 从左側管理菜单点击建站向导进入. 第一步:创建网站 能够直接设置所属的父网站.填写相 ...
- 单引號转义符q’的使用
当字符串包括单引號时,能够使用转义符q'对单引號进行转义. q'后面的字符能够是: ! [ ] { } ( ) < > 前提是这些字符不会出如今兴许 ...
- 配置sudo su
买了UCloud的机器默认给的是root权限,从安全考虑,这个得改改,那就添加一个普通用户吧.. 可是那群民工又有话说了,得有root权限才能启动那些服务进程,每次都要输入root密码才能切换到roo ...