Description

在 W 星球上有 n 个国家。为了各自国家的经济发展,他们决定在各个国家

之间建设双向道路使得国家之间连通。但是每个国家的国王都很吝啬,他们只愿

意修建恰好 n – 1条双向道路。 每条道路的修建都要付出一定的费用, 这个费用等于道路长度乘以道路两端的国家个数之差的绝对值。例如,在下图中,虚线所示道路两端分别有 2 个、4个国家,如果该道路长度为 1,则费用为1×|2 – 4|=2。图中圆圈里的数字表示国家的编号。



由于国家的数量十分庞大,道路的建造方案有很多种,同时每种方案的修建

费用难以用人工计算,国王们决定找人设计一个软件,对于给定的建造方案,计

算出所需要的费用。请你帮助国王们设计一个这样的软件。

Input

输入的第一行包含一个整数n,表示 W 星球上的国家的数量,国家从 1到n

编号。接下来 n – 1行描述道路建设情况,其中第 i 行包含三个整数ai、bi和ci,表

示第i 条双向道路修建在 ai与bi两个国家之间,长度为ci。

Output

输出一个整数,表示修建所有道路所需要的总费用。

水题.......(老年退役选手只能做水题压压惊。)

假设当前边的两部分的点的数量分别为\(x,y\),则当我们遍历的时候

\(y=size[v],x=n-size[v]\) (\(v\)为当前遍历到的儿子节点)

那么我们得到的就是\(|n-2\times size[v]| \times w[i]\)(\(w[i]\)为当前边的边权)

注意边权要开 \(long \ long\)

代码

#include<cstdio>
#include<iostream>
#include<algorithm>
#define R register
#define lo long long using namespace std; const int gz=1e6+8; inline void in(R int &x)
{
R int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
} int head[gz],tot,size[gz],n; lo ans; struct cod{int u,v;lo w;}edge[gz<<1]; inline void add(R int x,R int y,R lo z)
{
edge[++tot].u=head[x];
edge[tot].v=y;
edge[tot].w=z;
head[x]=tot;
} void dfs(R int u,R int fa)
{
size[u]=1;
for(R int i=head[u];i;i=edge[i].u)
{
if(edge[i].v==fa)continue;
dfs(edge[i].v,u);
size[u]+=size[edge[i].v];
ans+=(lo)(abs(n-2*size[edge[i].v])*edge[i].w);
}
} int main()
{
in(n);
for(R int i=1,x,y;i<n;i++)
{
lo z;
in(x),in(y),scanf("%lld",&z);
add(x,y,z),add(y,x,z);
}
dfs(1,0);
printf("%lld\n",ans);
}

Dfs【P2052】 [NOI2011]道路修建的更多相关文章

  1. P2052 [NOI2011]道路修建——树形结构(水题,大佬勿进)

    P2052 [NOI2011]道路修建 这个题其实在dfs里面就可以把事干完的,(我一开始还拿出来求了一把)…… 一条边的贡献就是儿子的大小和n-siz[v]乘上边权: #include<cma ...

  2. 洛谷P2052 [NOI2011]道路修建(树形DP)

    题目描述 在 W 星球上有 n 个国家.为了各自国家的经济发展,他们决定在各个国家 之间建设双向道路使得国家之间连通.但是每个国家的国王都很吝啬,他们只愿 意修建恰好 n – 1 条双向道路. 每条道 ...

  3. P2052 [NOI2011]道路修建

    题目描述 在 W 星球上有 n 个国家.为了各自国家的经济发展,他们决定在各个国家 之间建设双向道路使得国家之间连通.但是每个国家的国王都很吝啬,他们只愿 意修建恰好 n – 1 条双向道路. 每条道 ...

  4. Luogu P2052 [NOI2011]道路修建

    吐槽一下 我开了\(-O2\)优化结果跑的更慢了什么鬼???!!! 我怕不是吸了一口毒氧气 不要脸的放上我的博客,欢迎大家前来面基 题目大意 给定一棵有\(n\)个节点的树,树中有\({n-1}\)条 ...

  5. BZOJ 2435: [Noi2011]道路修建( dfs )

    NOI的水题...直接一遍DFS即可 ------------------------------------------------------------------------- #includ ...

  6. BZOJ 2435: [Noi2011]道路修建 dfs搜图

    2435: [Noi2011]道路修建 Description 在 W 星球上有 n 个国家.为了各自国家的经济发展,他们决定在各个国家之间建设双向道路使得国家之间连通.但是每个国家的国王都很吝啬,他 ...

  7. bzoj 2435: [Noi2011]道路修建 树上 dp

    2435: [Noi2011]道路修建 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  8. NOI2011道路修建

    2435: [Noi2011]道路修建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1974  Solved: 550[Submit][Status ...

  9. 2435: [Noi2011]道路修建

    2435: [Noi2011]道路修建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2188  Solved: 639[Submit][Status ...

  10. BZOJ_2435_[Noi2011]道路修建_dfs

    BZOJ_2435_[Noi2011]道路修建_dfs 题意: http://www.lydsy.com/JudgeOnline/problem.php?id=2435 分析: dfs搞定. 我怕爆栈 ...

随机推荐

  1. 用setTimeout模拟QQ延时提示框

    很简单的代码,不多解释,一看就懂. <!DOCTYPE html> <html> <head> <meta http-equiv="Content- ...

  2. 【leetcode 简单】 第五十一题 有效电话号码

    给定一个包含电话号码列表(一行一个电话号码)的文本文件 file.txt,写一个 bash 脚本输出所有有效的电话号码. 你可以假设一个有效的电话号码必须满足以下两种格式: (xxx) xxx-xxx ...

  3. jquery-load()方法

    调用load方法的完整格式是:load( url, [data], [callback] ), 其中: •url:是指要导入文件的地址. •data:可选参数:因为Load不仅仅可以导入静态的html ...

  4. E.Text Editor (Gym 101466E + 二分 + kmp)

    题目链接:http://codeforces.com/gym/101466/problem/E 题目: 题意: 给你s串和t串,一个数k,求t的最长前缀串在s串中出现次数不少于k. 思路: 一眼二分+ ...

  5. NYOJ 1073 最大值 (模拟)

    题目链接 输入N个数,M次查询. 每次查询给出一个数x. 要求:每次查询输出前x个数中第i小的数.(i为第i次查询) 你可以假设M <= N,Xi <= Xi+1 <= Xi+2 & ...

  6. 天梯赛 L2-014 列车调度 (模拟)

    火车站的列车调度铁轨的结构如下图所示. Figure 两端分别是一条入口(Entrance)轨道和一条出口(Exit)轨道,它们之间有N条平行的轨道.每趟列车从入口可以选择任意一条轨道进入,最后从出口 ...

  7. 利用Jsoup模拟跳过登录爬虫获取数据

    今天在学习爬虫的时候想着学习一下利用jsoup模拟登录.下面分为有验证码和无验证码的情况进行讨论. ---------------------------无验证码的情况---------------- ...

  8. Sqlmap与burpsuite动态更新某些参数

    有如下注入点: http://localhost/id=1&order_nu=1 情况说明: id为注入点,  每一次注入时, order_nu不能跟上次的一样(假说这个order_nu为一个 ...

  9. Cesium 初始化Viewer

    <pre name="code" class="javascript"><script> var viewer = new Cesium ...

  10. gunicorn之日志详细配置

    gunicorn的日志配置 gunicorn的日志配置相关的常用参数有4个,分别是accesslog,access_log_format,errorlog,loglevel. accesslog:用户 ...