写在前面的废话:

出了托福成绩啦,本人战战兢兢考了个97!成绩好的出乎意料!喜大普奔!撒花庆祝!

傻…………寒假还要怒学一个月刷100庆祝个毛线…………


正题:

题目是CNN,但是CNN的具体原理和之后会写一篇博客在deeplearning目录下详细说明。

简单地说,CNN与NN相比独特之处在于用部分连接代替全链接,并用pooling来对数据进行降维,这样做有几个好处:

    1. 对于大图像来说所需训练的参数大大减少
    2. 获取图像的部分特征而非全局特征
    3. pooling使得网络的输出结果具有一定的平移和遮挡不变性
    4. demo见:(效果还是挺好的,当年华尔街银行用来读支票)

这里主要说代码。

1、类:LeNetConvPoolLayer

    • 包括了一次卷积和一次pooling,一共两层。
    • 初始化参数输入数据,输入图片大小,卷积核大小,池化大小
    • 池化并不使用平均值,而是使用最大值作为输出
    • 中间参数有卷积核W,偏置b,卷积输出和偏置输出,整体输出=tanh(池化输出+偏置)
    • W和b合并成一个列表params

2、类:evaluate_lenet5

    • 包括了两个LeNetConvPoolLayer(Layer0,1)和两层神经网络(Layer2,3)
    • 第一层神经节点用类:HiddentLayer,第二层用类:OutputLayer(MLP中的内容,以后补)
    • test_model和validate_model:输入一个样本,输出与label的误差
    • 四层的函数并在一起:params = layer3.params + layer2.params + layer1.params + layer0.params(可以这样?没见过),用grads = T.grad(cost, params)求偏导,好方便。
    • train_model中用update功能更新参数(更快,update表用for循环构建)

用到的两个类大概就是这个样子。


训练过程中的要点:

  • 两层循环,一层逐个样本训练,参数minibatch_index;一层循环训练总样本,参数epoch;iter表示已经学习次数
  • 参数patience表示最大iter数,初始化维10000,若在评价中发现训练表现良好则翻倍
  • 每到validation_frequency则评价一次,若当前误差比最好误差好0.995则翻倍patience
  • iter>=patience || epochs>=n_epoch 则停止训练

训练过程大概就是这个样子。


一点感想:

  • 这次一段代码看下来,对python的class有了更深的理解。
  • 就目前的理解,第一次调用class,class会自动初始化里面的参数;
  • 以后每次调用class的函数,class都会自动从头跑一次,更新里面的参数并输出给function
  • 所以一个class is better than c里面的一个function(因为c里面只能计算,而python里面把结构搭建起来了而且保存参数)
  • Theano.tensor下的shape[]和dimshuffle[]具体用法还不懂
  • 另外这个代码下多处用到了for循环,matlab里面是很忌讳for的。为什么这里却很常用,反而少见矩阵运算了?
  • validation_losses = [validate_model(i) for i in xrange(n_valid_batches)]  用法很高级

  • params = layer3.params + layer2.params + layer1.params + layer0.params 是合并表的意思?
  • 用update来更新参数,快准狠!

 下面是自己自己一行一行读代码写并写上的中文注释。(cnblog太窄复制到文本编辑器看吧,推荐sublime)

This implementation simplifies the model in the following ways:

 - LeNetConvPool doesn't implement location-specific gain and bias parameters
- LeNetConvPool doesn't implement pooling by average, it implements pooling
by max.
- Digit classification is implemented with a logistic regression rather than
an RBF network
- LeNet5 was not fully-connected convolutions at second layer """
import cPickle
import gzip
import os
import sys
import time import numpy import theano
import theano.tensor as T
from theano.tensor.signal import downsample
from theano.tensor.nnet import conv from logistic_sgd import LogisticRegression, load_data
from mlp import HiddenLayer class LeNetConvPoolLayer(object):
"""Pool Layer of a convolutional network """ def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2)):
"""
Allocate a LeNetConvPoolLayer with shared variable internal parameters. :type rng: numpy.random.RandomState
:param rng: a random number generator used to initialize weights :type input: theano.tensor.dtensor4
:param input: symbolic image tensor, of shape image_shape :type filter_shape: tuple or list of length 4
:param filter_shape: (number of filters, num input feature maps,
filter height,filter width) :type image_shape: tuple or list of length 4
:param image_shape: (batch size, num input feature maps,
image height, image width) :type poolsize: tuple or list of length 2
:param poolsize: the downsampling (pooling) factor (#rows,#cols)
""" assert image_shape[1] == filter_shape[1]
self.input = input # there are "num input feature maps * filter height * filter width"
# inputs to each hidden unit
fan_in = numpy.prod(filter_shape[1:])
# each unit in the lower layer receives a gradient from:
# "num output feature maps * filter height * filter width" /
# pooling size
fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) /
numpy.prod(poolsize))
# initialize weights with random weights
W_bound = numpy.sqrt(6. / (fan_in + fan_out))
self.W = theano.shared(numpy.asarray(
rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
dtype=theano.config.floatX),
borrow=True) # the bias is a 1D tensor -- one bias per output feature map
b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX)
self.b = theano.shared(value=b_values, borrow=True) # convolve input feature maps with filters
conv_out = conv.conv2d(input=input, filters=self.W, #卷积函数,用W卷积不加偏置
filter_shape=filter_shape, image_shape=image_shape) # downsample each feature map individually, using maxpooling
pooled_out = downsample.max_pool_2d(input=conv_out, #pooling,用max不用mean,不重叠
ds=poolsize, ignore_border=True) # add the bias term. Since the bias is a vector (1D array), we first
# reshape it to a tensor of shape (1,n_filters,1,1). Each bias will
# thus be broadcasted across mini-batches and feature map
# width & height
self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')) #卷积层池化后加上偏置用tanh输出,dimshuffle()将向量整形为矩阵,具体不懂 # store parameters of this layer
self.params = [self.W, self.b] #卷积核+偏置并为参数 #学习率=0.1, 学习次数=200, nkerns=[20,50]表示第一层20个核,第二层50个核; 补丁大小:500????
def evaluate_lenet5(learning_rate=0.1, n_epochs=200,
dataset='../data/mnist.pkl.gz',
nkerns=[20, 50], batch_size=500):
""" Demonstrates lenet on MNIST datasets :type learning_rate: float
:param learning_rate: learning rate used (factor for the stochastic
gradient) :type n_epochs: int
:param n_epochs: maximal number of epochs to run the optimizer :type dataset: string
:param dataset: path to the dataset used for training /testing (MNIST here) :type nkerns: list of ints
:param nkerns: number of kernels on each layer
""" rng = numpy.random.RandomState(23455) #随机数做种 datasets = load_data(dataset) #读入数据 train_set_x, train_set_y = datasets[0] #传递三部分数据(解包)
valid_set_x, valid_set_y = datasets[1]
test_set_x, test_set_y = datasets[2] # compute number of minibatches for training, validation and testing #表示数据可以借用提高GPU运算速率,shape[0],作用为止
n_train_batches = train_set_x.get_value(borrow=True).shape[0]
n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
n_test_batches = test_set_x.get_value(borrow=True).shape[0]
n_train_batches /= batch_size #样本总数量
n_valid_batches /= batch_size
n_test_batches /= batch_size # allocate symbolic variables for the data
index = T.lscalar() # index to a [mini]batch #当前batch的下标
x = T.matrix('x') # the data is presented as rasterized images #当前batch
y = T.ivector('y') # the labels are presented as 1D vector of #当前batch的标签
# [int] labels ishape = (28, 28) # this is the size of MNIST images ######################
# BUILD ACTUAL MODEL #
######################
print '... building the model' # Reshape matrix of rasterized images of shape (batch_size,28*28)
# to a 4D tensor, compatible with our LeNetConvPoolLayer
layer0_input = x.reshape((batch_size, 1, 28, 28)) #input是reshape的x # Construct the first convolutional pooling layer:
# filtering reduces the image size to (28-5+1,28-5+1)=(24,24)
# maxpooling reduces this further to (24/2,24/2) = (12,12)
# 4D output tensor is thus of shape (batch_size,nkerns[0],12,12)
#初始化第一个卷积池化layer,input = layer0_input
layer0 = LeNetConvPoolLayer(rng, input=layer0_input,
image_shape=(batch_size, 1, 28, 28),
filter_shape=(nkerns[0], 1, 5, 5), poolsize=(2, 2)) # Construct the second convolutional pooling layer
# filtering reduces the image size to (12-5+1,12-5+1)=(8,8)
# maxpooling reduces this further to (8/2,8/2) = (4,4)
# 4D output tensor is thus of shape (nkerns[0],nkerns[1],4,4)
#初始化第二个卷积池化layer , input = layer0_output
layer1 = LeNetConvPoolLayer(rng, input=layer0.output,
image_shape=(batch_size, nkerns[0], 12, 12),
filter_shape=(nkerns[1], nkerns[0], 5, 5), poolsize=(2, 2)) # the TanhLayer being fully-connected, it operates on 2D matrices of
# shape (batch_size,num_pixels) (i.e matrix of rasterized images).
# This will generate a matrix of shape (20,32*4*4) = (20,512)
#layer2是第一层全连接层,拉平后的池化层作为输入
layer2_input = layer1.output.flatten(2) # construct a fully-connected sigmoidal layer
# 用隐藏层的类表示
layer2 = HiddenLayer(rng, input=layer2_input, n_in=nkerns[1] * 4 * 4,
n_out=500, activation=T.tanh) # classify the values of the fully-connected sigmoidal layer
# 输出是逻辑回归层
layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10) # the cost we minimize during training is the NLL of the model
# 代价函数值用negative_log_likelihood来算,(自带的?)
cost = layer3.negative_log_likelihood(y) # create a function to compute the mistakes that are made by the model
# 定义一个函数,计算输出层的误差,用givens来覆盖全局变量
test_model = theano.function([index], layer3.errors(y),
givens={
x: test_set_x[index * batch_size: (index + 1) * batch_size],
y: test_set_y[index * batch_size: (index + 1) * batch_size]}) ## 同上定义一个函数,计算输出层的误差,用givens来覆盖全局变量
validate_model = theano.function([index], layer3.errors(y),
givens={
x: valid_set_x[index * batch_size: (index + 1) * batch_size],
y: valid_set_y[index * batch_size: (index + 1) * batch_size]}) # create a list of all model parameters to be fit by gradient descent
# 各层参数合并
params = layer3.params + layer2.params + layer1.params + layer0.params # create a list of gradients for all model parameters
# 利用自带的函数计算各参数的偏导
grads = T.grad(cost, params) # train_model is a function that updates the model parameters by
# SGD Since this model has many parameters, it would be tedious to
# manually create an update rule for each model parameter. We thus
# create the updates list by automatically looping over all
# (params[i],grads[i]) pairs.
# 更新参数十分麻烦, 创建一个叫做updates的list来自动更新(?为什么要用for,这样不会很慢吗?——坟蛋这不是matlab!)
updates = []
for param_i, grad_i in zip(params, grads):
updates.append((param_i, param_i - learning_rate * grad_i)) # 定义训练函数,输出cost并用update 的方法更新参数
train_model = theano.function([index], cost, updates=updates,
givens={
x: train_set_x[index * batch_size: (index + 1) * batch_size],
y: train_set_y[index * batch_size: (index + 1) * batch_size]}) ###############
# TRAIN MODEL #
###############
print '... training'
# early-stopping parameters
patience = 10000 # look as this many examples regardless
patience_increase = 2 # wait this much longer when a new best is 如果训练误差良好的话训练的次数变为两倍
# found
improvement_threshold = 0.995 # a relative improvement of this much is 如果误差小于上一次误差的0.995,patience increase
# considered significant
validation_frequency = min(n_train_batches, patience / 2) #评价训练效果的频率,这个数值为什么这么取我不清楚
# go through this manually
# minibatche before checking the network
# on the validation set; in this case we
# check every epoch best_params = None
best_validation_loss = numpy.inf
best_iter = 0
test_score = 0.
start_time = time.clock() epoch = 0
done_looping = False while (epoch < n_epochs) and (not done_looping): #总体样本训练次数
epoch = epoch + 1
for minibatch_index in xrange(n_train_batches): #逐个样本训练 iter = (epoch - 1) * n_train_batches + minibatch_index #到目前为止总的训练次数 if iter % 100 == 0: #每训练100次输出一个提示,提示训练次数
print 'training @ iter = ', iter
cost_ij = train_model(minibatch_index) #训练一次 if (iter + 1) % validation_frequency == 0: #到达需要进行一次评价的次数,对学习结果进行评价 # compute zero-one loss on validation set #利用for循环和validation_modle(index)返回所有评价样本的误差值并构造一个表
validation_losses = [validate_model(i) for i
in xrange(n_valid_batches)]
this_validation_loss = numpy.mean(validation_losses) #当前误差值=当前平均
print('epoch %i, minibatch %i/%i, validation error %f %%' % \
(epoch, minibatch_index + 1, n_train_batches, \
this_validation_loss * 100.)) # if we got the best validation score until now
if this_validation_loss < best_validation_loss: #如果当 前平均误差<(最好误差*阀值),证明参数还有很大的优化空间,加倍训练次数 #improve patience if loss improvement is good enough
if this_validation_loss < best_validation_loss * \
improvement_threshold:
patience = max(patience, iter * patience_increase) # save best validation score and iteration number
best_validation_loss = this_validation_loss
best_iter = iter # test it on the test set
test_losses = [test_model(i) for i in xrange(n_test_batches)] #用测试样本对模型参数进行评价
test_score = numpy.mean(test_losses) #这里有个tip:应为参数使用train集合训练使用validation集合进行评价;
print((' epoch %i, minibatch %i/%i, test error of best ' #所以参数的拟合是会偏向那两个集合的特征的,所以要是用全新的集合来得到参数的客观表现
'model %f %%') % #在各种训练中,样本都要分为训练样本、评价(拟合)样本和测试样本进行使用,比例大概是6:2:2,这里是 5:1:1
(epoch, minibatch_index + 1, n_train_batches,
test_score * 100.)) if patience <= iter: #如果没耐性了(到达最大训练次数),就停止训练
done_looping = True
break
#下面就是计时啊评价啊什么什么的
end_time = time.clock()
print('Optimization complete.')
print('Best validation score of %f %% obtained at iteration %i,'\
'with test performance %f %%' %
(best_validation_loss * 100., best_iter + 1, test_score * 100.))
print >> sys.stderr, ('The code for file ' +
os.path.split(__file__)[1] +
' ran for %.2fm' % ((end_time - start_time) / 60.)) if __name__ == '__main__':
evaluate_lenet5() def experiment(state, channel):
evaluate_lenet5(state.learning_rate, dataset=state.dataset)

用Theano学习Deep Learning(三):卷积神经网络的更多相关文章

  1. Coursera Deep Learning笔记 卷积神经网络基础

    参考1 参考2 1. 计算机视觉 使用传统神经网络处理机器视觉的一个主要问题是输入层维度很大.例如一张64x64x3的图片,神经网络输入层的维度为12288. 如果图片尺寸较大,例如一张1000x10 ...

  2. (转) 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ

    特别棒的一篇文章,仍不住转一下,留着以后需要时阅读 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ

  3. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

  4. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  5. 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)

    ##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...

  6. 机器学习——深度学习(Deep Learning)

    Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,近期研究了机器学习中一些深度学习的相关知识,本文给出一些非常实用的资料和心得. Key W ...

  7. (转)机器学习——深度学习(Deep Learning)

    from:http://blog.csdn.net/abcjennifer/article/details/7826917 Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立 ...

  8. 机器学习(Machine Learning)&amp;深度学习(Deep Learning)资料

    机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008 ...

  9. 转:浅谈深度学习(Deep Learning)的基本思想和方法

    浅谈深度学习(Deep Learning)的基本思想和方法  参考:http://blog.csdn.net/xianlingmao/article/details/8478562 深度学习(Deep ...

随机推荐

  1. SQL Server 批量插入数据

    请看代码: 创建表值参数类型: 请看代码:

  2. caffe官网的部分翻译及NG的教程

    Caffe原来叫:Convolutional Architecture for Fast Feature Embedding 官网的个人翻译:http://blog.csdn.net/fengbing ...

  3. [转载][QT][SQL]sql学习记录5_sqlite视图(View)

    转载自:http://www.runoob.com/sqlite/sqlite-view.html SQLite 视图(View) 视图(View)只不过是通过相关的名称存储在数据库中的一个 SQLi ...

  4. linux发行版本centos7.4上安装jdk,tomcat,mariadb良心教程

    准备工作: 本地安装:rpm -ivh 程序名 因为jdk,tomcat,mysql的安装过程需要从网上下载部分支持包才可以继续,所以要求提前安装下载好依赖. yum install glibc.i6 ...

  5. BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】

    Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...

  6. 《DSP using MATLAB》示例Example7.9

    代码: wp = 0.2*pi; ws = 0.3*pi; As = 50; tr_width = ws - wp; M = ceil((As-7.95)/(2.285*tr_width) + 1 ) ...

  7. JLOI2019游记

    JLOI2019游记 DAY -??? 听说是12省联考,好刺激. DAY 1 看题 t1是个lydsy题我还写过博客,t2不会,t3一脸神仙. 这个t3数据好大啊,看到好几个人都用gedit打开大样 ...

  8. rollupjs 基本试用

    备注:    前端构建工具   1. 安装 yarn global add rollup yarn global add rollup 2. 基本使用 touch index.js index.js ...

  9. web 调试工具docker的安装使用

    1.   weinre 工具 docker run -d -p 8080:8080 beevelop/weinre 2. vorlonjs(不支持https)  docker run --name v ...

  10. (转)Android studio 使用心得(五)—代码混淆和破解apk

    这篇文章等是跟大家分享一在Android studio 进行代码混淆配置.之前大家在eclipse上也弄过代码混淆配置,其实一样,大家可以把之前在eclipse上的配置文件直接拿过来用.不管是.cfg ...