AlphaGo:用机器学习技术古老的围棋游戏掌握AlphaGo: Mastering the ancient game of Go with Machine Learning
AlphaGo: Mastering the ancient game of Go with Machine Learning
But one game has thwarted A.I. research thus far: the ancient game of Go. Invented in China over 2500 years ago, Go is played by more than 40 million people worldwide. The rules are simple: players take turns to place black or white stones on a board, trying to capture the opponent's stones or surround empty space to make points of territory. Confucius wrote about the game, and its aesthetic beauty elevated it to one of the four essential arts required of any true Chinese scholar. The game is played primarily through intuition and feel, and because of its subtlety and intellectual depth it has captured the human imagination for centuries.
But as simple as the rules are, Go is a game of profound complexity. The search space in Go is vast -- more than a googol times larger than chess (a number greater than there are atoms in the universe!). As a result, traditional “brute force” AI methods -- which construct a search tree over all possible sequences of moves -- don’t have a chance in Go. To date, computers have played Go only as well as amateurs. Experts predicted it would be at least another 10 years until a computer could beat one of the world’s elite group of Go professionals.
We saw this as an irresistible challenge! We started building a system, AlphaGo, described in a paper in Nature this week, that would overcome these barriers. The key to AlphaGo is reducing the enormous search space to something more manageable. To do this, it combines a state-of-the-art tree search with two deep neural networks, each of which contains many layers with millions of neuron-like connections. One neural network, the “policy network”, predicts the next move, and is used to narrow the search to consider only the moves most likely to lead to a win. The other neural network, the “value network”, is then used to reduce the depth of the search tree -- estimating the winner in each position in place of searching all the way to the end of the game.
AlphaGo’s search algorithm is much more human-like than previous approaches. For example, when Deep Blue played chess, it searched by brute force over thousands of times more positions than AlphaGo. Instead, AlphaGo looks ahead by playing out the remainder of the game in its imagination, many times over - a technique known as Monte-Carlo tree search. But unlike previous Monte-Carlo programs, AlphaGo uses deep neural networks to guide its search. During each simulated game, the policy network suggests intelligent moves to play, while the value network astutely evaluates the position that is reached. Finally, AlphaGo chooses the move that is most successful in simulation.
We first trained the policy network on 30 million moves from games played by human experts, until it could predict the human move 57% of the time (the previous record before AlphaGo was 44%). But our goal is to beat the best human players, not just mimic them. To do this, AlphaGo learned to discover new strategies for itself, by playing thousands of games between its neural networks, and gradually improving them using a trial-and-error process known as reinforcement learning. This approach led to much better policy networks, so strong in fact that the raw neural network (immediately, without any tree search at all) can defeat state-of-the-art Go programs that build enormous search trees.
These policy networks were in turn used to train the value networks, again by reinforcement learning from games of self-play. These value networks can evaluate any Go position and estimate the eventual winner - a problem so hard it was believed to be impossible.
Of course, all of this requires a huge amount of compute power, so we made extensive use ofGoogle Cloud Platform, which enables researchers working on AI and Machine Learning to access elastic compute, storage and networking capacity on demand. In addition, new open source libraries for numerical computation using data flow graphs, such as TensorFlow, allow researchers to efficiently deploy the computation needed for deep learning algorithms across multiple CPUs or GPUs.
So how strong is AlphaGo? To answer this question, we played a tournament between AlphaGo and the best of the rest - the top Go programs at the forefront of A.I. research. Using a single machine, AlphaGo won all but one of its 500 games against these programs. In fact, AlphaGo even beat those programs after giving them 4 free moves headstart at the beginning of each game. A high-performance version of AlphaGo, distributed across many machines, was even stronger.
![]() |
This figure from the Nature article shows the Elo rating and approximate rank of AlphaGo (both single machine and distributed versions), the European champion Fan Hui (a professional 2-dan), and the strongest other Go programs, evaluated over thousands of games. Pale pink bars show the performance of other programs when given a four move headstart. |
It seemed that AlphaGo was ready for a greater challenge. So we invited the reigning 3-time European Go champion Fan Hui — an elite professional player who has devoted his life to Go since the age of 12 — to our London office for a challenge match. The match was played behind closed doors between October 5-9 last year. AlphaGo won by 5 games to 0 -- the first time a computer program has ever beaten a professional Go player.
AlphaGo’s next challenge will be to play the top Go player in the world over the last decade,Lee Sedol. The match will take place this March in Seoul, South Korea. Lee Sedol is excited to take on the challenge saying, "I am privileged to be the one to play, but I am confident that I can win." It should prove to be a fascinating contest!
We are thrilled to have mastered Go and thus achieved one of the grand challenges of AI. However, the most significant aspect of all this for us is that AlphaGo isn’t just an ‘expert’ system built with hand-crafted rules, but instead uses general machine learning techniques to allow it to improve itself, just by watching and playing games. While games are the perfect platform for developing and testing AI algorithms quickly and efficiently, ultimately we want to apply these techniques to important real-world problems. Because the methods we have used are general purpose, our hope is that one day they could be extended to help us address some of society’s toughest and most pressing problems, from climate modelling to complex disease analysis.
AlphaGo:用机器学习技术古老的围棋游戏掌握AlphaGo: Mastering the ancient game of Go with Machine Learning的更多相关文章
- 数据挖掘:实用机器学习技术P295页:
数据挖掘:实用机器学习技术P295页: 在weka软件中的实验者界面中,新建好实验项目后,添加相应的实验数据,然后添加对应需要的分类算法 ,需要使用多个算法时候重复操作添加add algorithm. ...
- java围棋游戏源代码
//李雨泽源代码,不可随意修改.//时间:2017年9月22号.//地点:北京周末约科技有限公司.//package com.bao; /*围棋*/ /*import java.awt.*; impo ...
- 谷歌发布"自动机器学习"技术 AI可自我创造
谷歌发布"自动机器学习"技术 AI可自我创造 据Inverse报道,今年5月份,谷歌宣布其人工智能(AI)研究取得重大进展,似乎帮助科幻小说中最耸人听闻的末日预言成为现实.谷歌推出 ...
- 使用Java的GUI技术实现 “ 贪吃蛇 ” 游戏
详细教程: 使用Java的GUI技术实现 " 贪吃蛇 " 游戏_IT打工酱的博客-CSDN博客
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...
- 数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系?
本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答 ...
- 机器学习笔记1 - Hello World In Machine Learning
前言 Alpha Go在16年以4:1的战绩打败了李世石,17年又以3:0的战绩战胜了中国围棋天才柯洁,这真是科技界振奋人心的进步.伴随着媒体的大量宣传,此事变成了妇孺皆知的大事件.大家又开始激烈的讨 ...
- 学习笔记之机器学习(Machine Learning)
机器学习 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0 机器学习是人工智能的一个分 ...
随机推荐
- java 基础知识-数组的7种算法(排序、求和、最值、遍历...)
遍历 遍历就是把这个数组的每个元素 显示出来 遍历的方法就是先定义这个数组的大小,然后用FOR循环来完成数组,例如 double[] score = new double[5]; Scanner in ...
- docker-compose RabbitMQ与Nodejs接收端同时运行时的错误
首先讲一下背景: 我现在在开发的一个项目,需要运行RabbitMQ和Nodejs接收端(amqplib库),但是在Nodejs接收端运行时,无法连接至RabbitMQ端,经常提示说 connect E ...
- Java8所有的包介绍(由英文文档翻译而来)
转载: Java8所有的包介绍(由英文文档翻译而来)
- OOD沉思录 --- 导引
一个对象一定会有如下4个属性: 1,它的身份标示,可能只是它在内存中的地址; 2,它的类的属性(通常是静态属性)和这些属性的值(通常是动态的); 3,它的类的行为(从实现者的角度看); 3,它的公开接 ...
- Python编程举例-iter和next结合定制可迭代对象
class Foo: def __init__(self,n): self.n = n def __iter__(self): return self def __next__(self): if s ...
- Django实现单用户登录
最近由于要毕业了写论文做毕设,然后还在实习发现已经好久都没有写博客了.今天由于工作需求,需要用Django实现单用户登录.大概意思就是跟QQ一样的效果,每个账号只能一个地方登录使用,限制账号的登录次数 ...
- python中if和elif的区别
多个if语句是每次单独判断 比如: 例子一: a = 5 if a < 6: #条件1 print(1) if a < 7: #条件2 print(2) else: print(3) 条件 ...
- ARP监测工具Arpwatch
ARP监测工具Arpwatch ARP协议是网络的基础协议.基于ARP协议的ARP攻击是局域网最为常见和有效的攻击方式.ARP攻击可以通过发送伪造的ARP包实施欺骗,实现各种中间人攻击.Arpwa ...
- 基于python中staticmethod和classmethod的区别(详解)
例子 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 class A(object): def foo(self,x): print "executing foo ...
- 2018 计算之道初赛第二场 阿里巴巴的手机代理商(困难)(反向可持久化Trie)
阿里巴巴的手机代理商(困难) 阿里巴巴的手机代理商正在研究 infra 输入法的新功能.他们需要分析单词频率以改进用户输入法的体验.于是需要你在系统内核里面写一个 API. API 有如下功能: 添加 ...