ConcurrentHashMap
HashMap是线程非安全的,在多线程环境下,采用的是Fail-Fast快速失败机制,即当A线程在访问容器的时候,如果此时B线程修改了HashMap的结构,那么就会抛出并发修改异常。且当A线程添加一个Entry的时候,它会首先获得头节点,如果此时B线程也要添加一个Entry的时候,它会获得同样的头节点,那么当A线程添加完newEntry之后,B线程实际上会将A的覆盖掉。
HashTable是一个线程安全的类,它使用synchronized来锁住整张Hash表来实现线程安全,即每次锁住整张表让线程独占。
Collections.synchronizedMap()是对方法加锁
public V get(Object key) {
            synchronized (mutex) {return m.get(key);}

}

能保证线程安全性,却影响并发条件下的性能,因为必须当A线程释放锁之后,B线程才能够获得锁并对map进行操作。
 
那么要如何保证在多线程环境下的线程安全性并保证性能呢?使用ConcurrentHashMap
ConcurrentHashMap采用的是分段锁技术,它的底层是一个Segment[]的数组(数组默认大小为16,即并发数为16),每个segment称为一个段,在每一段上又是一个类似于HashMap的数据结构,每个segment上都有一个锁。
 
ConcurrentHashMap允许多个修改操作并发执行,只要多个修改操作发生在不同的段上。有些方法需要跨段,比如size()和containsValue(),它们可能需要锁定整个表而而不仅仅是某个段,这需要按顺序锁定所有段,操作完毕后,又按顺序释放所有段的锁。

ConcurrentHashMap给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问,能够实现真正的并发访问。如下图是ConcurrentHashMap的内部结构图:

每个Segment都继承了ReentrantLock

static class Segment<K,V> extends ReentrantLock

如何在ConcurrentHashMap中put一个Entry呢?

public V put(K key, V value) {
Segment<K,V> s;
if (value == null) //判断value是否为null,如果为null直接抛出空指针异常
thrownew NullPointerException();
int hash = hash(key); //第一次计算hash值
int j = (hash >>> segmentShift) & segmentMask; //第二次计算hash值,这个值确定Segment的索引
if ((s = (Segment<K,V>)UNSAFE.getObject //获得Segment对象
(segments, (j << SSHIFT) + SBASE)) == null)
s = ensureSegment(j); //采用的是延迟初始化机制return s.put(key, hash, value, false); //真正的put,put操作是需要加锁的
}
final V put(K key, int hash, V value, boolean onlyIfAbsent) {
HashEntry<K,V> node = tryLock() ? null :
scanAndLockForPut(key, hash, value);
V oldValue;
try {
HashEntry<K,V>[] tab = table;
int index = (tab.length - 1) & hash; //第三次hash操作,获得table中的具体index
HashEntry<K,V> first = entryAt(tab, index);
for (HashEntry<K,V> e = first;;) {
if (e != null) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
if (!onlyIfAbsent) {
e.value = value;
++modCount;
}
break;
}
e = e.next;
}
else {
if (node != null)
node.setNext(first);
else
node = new HashEntry<K,V>(hash, key, value, first);
int c = count + 1;
if (c > threshold && tab.length < MAXIMUM_CAPACITY)
rehash(node);
else
setEntryAt(tab, index, node);
++modCount;
count = c;
oldValue = null;
break;
}
}
} finally {
unlock();
}
return oldValue;
}

如何从ConcurrentHashMap中根据key获取value呢?

public V get(Object key) {
Segment<K,V> s; // manually integrate access methods to reduce overhead
HashEntry<K,V>[] tab;
int h = hash(key);
long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
(tab = s.table) != null) {
for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
e != null; e = e.next) {
K k;
if ((k = e.key) == key || (e.hash == h && key.equals(k)))
return e.value;
}
}
return null;
}

值得注意的是,get操作是不需要加锁的,而是通过Unsafe对象的getObjectVolatile()方法提供的原子读语义,来获得Segment以及对应的链表,然后对链表遍历判断是否存在key相同的节点以及获得该节点的value。但由于遍历过程中其他线程可能对链表结构做了调整,因此get和containsKey返回的可能是过时的数据,这一点是ConcurrentHashMap在弱一致性上的体现。

size操作需要遍历所有的Segment才能算出整个Map的大小。假设我们当前遍历的Segment为S1,那么在遍历S1过程中其他的Segment比如S2可能会被修改,于是这一次运算出来的size值可能并不是Map当前的真正大小。所以一个比较简单的办法就是计算Map大小的时候所有的Segment都Lock住,不能更新(包含put,remove等等)数据,计算完之后再Unlock。这是普通人能够想到的方案,但是牛逼的作者还有一个更好的Idea:先给3次机会,不lock所有的Segment,遍历所有Segment,累加各个Segment的大小得到整个Map的大小,如果某相邻的两次计算获取的所有Segment的更新的次数(每个Segment都有一个modCount变量,这个变量在Segment中的Entry被修改时会加一,通过这个值可以得到每个Segment的更新操作的次数)是一样的,说明计算过程中没有更新操作,则直接返回这个值。如果这三次不加锁的计算过程中Map的更新次数有变化,则之后的计算先对所有的Segment加锁,再遍历所有Segment计算Map大小,最后再解锁所有Segment。源代码如下:

public int size() {
// Try a few times to get accurate count. On failure due to
// continuous async changes in table, resort to locking.
final Segment<K,V>[] segments = this.segments;
int size;
boolean overflow;
long sum; // 总的修改次数
long last = 0L; // 前一次的修改次数
int retries = -1;
try {
for (;;) {
if (retries++ == RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
ensureSegment(j).lock(); // 如果三次还不行,则需要强制给所有segment加锁
}
sum = 0L;
size = 0;
overflow = false;
for (int j = 0; j < segments.length; ++j) {
Segment<K,V> seg = segmentAt(segments, j);
if (seg != null) {
sum += seg.modCount;
int c = seg.count;
if (c < 0 || (size += c) < 0)
overflow = true;
}
}
if (sum == last)
break;
last = sum;
}
} finally {
if (retries > RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
segmentAt(segments, j).unlock();
}
}
return overflow ? Integer.MAX_VALUE : size;
}

containsValue操作采用了和size操作一样的想法:

public boolean containsValue(Object value) {
// Same idea as size()
if (value == null)
throw new NullPointerException();
final Segment<K,V>[] segments = this.segments;
boolean found = false;
long last = 0;
int retries = -1;
try {
outer: for (;;) {
if (retries++ == RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
ensureSegment(j).lock(); // force creation
}
long hashSum = 0L;
int sum = 0;
for (int j = 0; j < segments.length; ++j) {
HashEntry<K,V>[] tab;
Segment<K,V> seg = segmentAt(segments, j);
if (seg != null && (tab = seg.table) != null) {
for (int i = 0 ; i < tab.length; i++) {
HashEntry<K,V> e;
for (e = entryAt(tab, i); e != null; e = e.next) {
V v = e.value;
if (v != null && value.equals(v)) {
found = true;
break outer;
}
}
}
sum += seg.modCount;
}
}
if (retries > 0 && sum == last)
break;
last = sum;
}
} finally {
if (retries > RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
segmentAt(segments, j).unlock();
}
}
return found;
}
 
ArrayList是非线程安全的,Vector是线程安全的,因为它的方法都加了synchronized关键字,但是Vector效率很低。
    public synchronized int size() {
        return elementCount;

}

 
CopyOnWriteArrayList:写时复制ArrayList,在读的时候不加锁,在写的时候,首先会对原数组a进行拷贝a1,修改操作都是在a1上进行的,当修改完成之后,再将a指针指向拷贝的数组。这样做的好处是我们可以对CopyOnWrite容器进行并发的读,而不需要加锁,因为当前容器不会添加任何元素。所以CopyOnWrite容器也是一种读写分离的思想,读和写不同的容器。
 
向List中添加一个元素,在添加的时候是需要加锁的,否则多线程写的时候会Copy出N个副本出来。
/**
     * Appends the specified element to the end of this list.
     */
    public boolean add(E e) {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            Object[] elements = getArray();
            int len = elements.length;
            Object[] newElements = Arrays.copyOf(elements, len + 1);
            newElements[len] = e;
            setArray(newElements);
            return true;
        finally {
            lock.unlock();
        }
    }

 
 
读的时候不需要加锁,如果读的时候有多个线程正在向CopyOnWriteArrayList添加数据,读还是会读到旧的数据,因为写的时候不会锁住旧的List。
public E get(int index) {
    return get(getArray(), index);
}
 
 
CopyOnWriteArrayList用于读多写少的并发场景,它只能保证数据的最终一致性,不能保证数据的实时一致性。所以如果你希望写入的的数据,马上能读到,请不要使用CopyOnWrite容器。
 
 
 
 

并发容器-ConcurrentHashMap,CopyOnWriteArrayList的更多相关文章

  1. JAVA 多线程随笔 (三) 多线程用到的并发容器 (ConcurrentHashMap,CopyOnWriteArrayList, CopyOnWriteArraySet)

    1.引言 在多线程的环境中,如果想要使用容器类,就需要注意所使用的容器类是否是线程安全的.在最早开始,人们一般都在使用同步容器(Vector,HashTable),其基本的原理,就是针对容器的每一个操 ...

  2. Java多线程_并发容器ConcurrentHashMap/CopyOnWriteArrayList/CopyOnWriteArraySet

    ConcurrentHashMap         HashMap是线程不安全的,可以使用Collections.synchronizedMap(map)把一个不安全的map变成安全的,但是这里可以直 ...

  3. 计算机程序的思维逻辑 (74) - 并发容器 - ConcurrentHashMap

    本节介绍一个常用的并发容器 - ConcurrentHashMap,它是HashMap的并发版本,与HashMap相比,它有如下特点: 并发安全 直接支持一些原子复合操作 支持高并发.读操作完全并行. ...

  4. Java编程的逻辑 (74) - 并发容器 - ConcurrentHashMap

    ​本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http: ...

  5. Java并发编程:并发容器ConcurrentHashMap

    Java并发编程:并发容器之ConcurrentHashMap(转载) 下面这部分内容转载自: http://www.haogongju.net/art/2350374 JDK5中添加了新的concu ...

  6. 多线程之并发容器ConcurrentHashMap

    这部分内容转载自: http://www.haogongju.net/art/2350374 JDK5中添加了新的concurrent包,相对同步容器而言,并发容器通过一些机制改进了并发性能.因为同步 ...

  7. 09 jdk1.5的并发容器:CopyOnWriteArrayList(转载)

    原文链接:http://ifeve.com/java-copy-on-write/ Copy-On-Write简称COW,是一种用于程序设计中的优化策略. 其基本思路是,从一开始大家都在共享同一个内容 ...

  8. 并发容器ConcurrentHashMap#put方法解析

    jdk1.7.0_79 HashMap可以说是每个Java程序员用的最多的数据结构之一了,无处不见它的身影.关于HashMap,通常也能说出它不是线程安全的.这篇文章要提到的是在多线程并发环境下的Ha ...

  9. 8.并发容器ConcurrentHashMap#put方法解析

    jdk1.7.0_79 HashMap可以说是每个Java程序员用的最多的数据结构之一了,无处不见它的身影.关于HashMap,通常也能说出它不是线程安全的.这篇文章要提到的是在多线程并发环境下的Ha ...

随机推荐

  1. 使用webdriverwait封装查找元素方法

    对于selenium原生的查找元素方法进行封装,在timeout规定时间内循环查找页面上有没有某个元素 这样封装的好处: 1.可以有效提高查找元素的效率,避免元素还没加载完就抛异常 2.相对于time ...

  2. NUC972 MDK NON-OS

     NUC972直接可以在BSP包里模板进行编程,烧录用Nu writer  http://www2.keil.com/mdk5/legacy 下载对应的安装包的插件 是直接下载到DDR 里面去运行,所 ...

  3. Spring中bean的作用范围

    singleton作用域: Spring的scope的默认值是singleton Spring 只会为每一个bean创建一个实例,并保持bean的引用. <bean id="bean的 ...

  4. [SharePoint 2010] Visual Studio 2010內撰寫視覺化WebPart超簡單

    新一代的Visual Studio 2010對於SharePoint 2010的專案撰寫,有非常另人讚賞的改進. 以往寫一個WebPart要搞好多雜七雜八的步驟,也要硬寫HTML輸出,當然有人說可以寫 ...

  5. layerui如何设置显示的位置?

    转自:http://www.layui.com/doc/modules/layer.html#offset layer.open({ type: 1,//默认:0 (0表示信息框,1表示页面层,2表示 ...

  6. Ubuntu 安装 GNOME 之后开机进不了桌面

    折腾了两晚上,终于解决了这个问题,进入了桌面. 问题是这样产生的:我安装了 ubuntu-gnome-shell 这个包,然后出现配置 display manager 的选项,有 gdm3 和 lig ...

  7. HDU 4417 Super Mario(线段树)

    Super Mario Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  8. VS调用python方法

    1.  安装python3.7 2.  Vs2010中配置python: 3.添加头文件:#include <Python.h> 4.问题:error LNK2001: 无法解析的外部符号 ...

  9. Python--格式化输出%s和%d

    https://www.cnblogs.com/claidx/p/7253288.html pythn print格式化输出. %r 用来做 debug 比较好,因为它会显示变量的原始数据(raw d ...

  10. LeetCode_Add Two Numbers

    题目: You are given two linked lists representing two non-negative numbers. The digits are stored in r ...