2017-09-13 19:22:01

writer:pprp

题意很简单,就是通过矩阵快速幂进行运算,得到斐波那契数列靠后的位数

.

这是原理,实现部分就是矩阵的快速幂,也就是二分来做

矩阵快速幂可以用来解决线性递推方程,难点在于矩阵的构造

代码如下:

/*
@theme:用矩阵快速幂解决线性递推公式-斐波那契数列
@writer:pprp
@begin:21:17
@end:19:10
@error:注意mod的位置,不能连用,要加括号来用
@date:2017/9/13
*/ #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring> using namespace std;
typedef long long ll;
const int mod=; struct Mat
{
ll a[][];
}; Mat mat_mul(Mat x, Mat y)
{
Mat res;
memset(res.a,,sizeof(res.a));
for(int i = ; i < ; i++)
for(int j = ; j < ; j++)
for(int k = ; k < ; k++)
{
res.a[i][j] += x.a[i][k] * y.a[k][j];
res.a[i][j] %= mod;
}
return res;
} void quick_pow(ll n)
{
Mat E,res;
E.a[][] = E.a[][] = E.a[][] = ;
E.a[][] = ;
memset(res.a,,sizeof(res.a)); for(int i = ; i < ; i++)//二阶单位矩阵
res.a[i][i] = ; while(n)
{
if(n&)
res = mat_mul(res,E);
E = mat_mul(E,E);
n >>= ;
}
cout << res.a[][] << endl;
} int main()
{
ios::sync_with_stdio(false);
ll n;
while(cin >> n && n != -)
{
quick_pow(n);
}
return ;
}
/*
@theme:用矩阵快速幂解决线性递推公式-斐波那契数列
@writer:pprp
@begin:21:17
@end:19:10
@error:注意mod的位置,不能连用,要加括号来用
@date:2017/9/13
*/ #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring> using namespace std;
typedef long long ll;
const int mod=; struct Mat
{
ll a[][];
}; Mat mat_mul(Mat x, Mat y)
{
Mat res;
memset(res.a,,sizeof(res.a));
for(int i = ; i < ; i++)
for(int j = ; j < ; j++)
for(int k = ; k < ; k++)
{
res.a[i][j] += x.a[i][k] * y.a[k][j];
res.a[i][j] %= mod;
}
return res;
} void quick_pow(ll n)
{
Mat E,res;
E.a[][] = E.a[][] = E.a[][] = ;
E.a[][] = ;
memset(res.a,,sizeof(res.a)); for(int i = ; i < ; i++)//二阶单位矩阵
res.a[i][i] = ; while(n)
{
if(n&)
res = mat_mul(res,E);
E = mat_mul(E,E);
n >>= ;
}
cout << res.a[][] << endl;
} int main()
{
ios::sync_with_stdio(false);
ll n;
while(cin >> n && n != -)
{
quick_pow(n);
}
return ;
}

解题报告:poj 3070 - 矩阵快速幂简单应用的更多相关文章

  1. POJ 3070 矩阵快速幂解决fib问题

    矩阵快速幂:http://www.cnblogs.com/atmacmer/p/5184736.html 题目链接 #include<iostream> #include<cstdi ...

  2. POJ 3070 矩阵快速幂

    题意:求菲波那切数列的第n项. 分析:矩阵快速幂. 右边的矩阵为a0 ,a1,,, 然后求乘一次,就进一位,求第n项,就是矩阵的n次方后,再乘以b矩阵后的第一行的第一列. #include <c ...

  3. poj 3070 矩阵快速幂模板

    题意:求fibonacci数列第n项 #include "iostream" #include "vector" #include "cstring& ...

  4. poj 3233 矩阵快速幂

    地址 http://poj.org/problem?id=3233 大意是n维数组 最多k次方  结果模m的相加和是多少 Given a n × n matrix A and a positive i ...

  5. POJ3070矩阵快速幂简单题

    题意:       求斐波那契后四位,n <= 1,000,000,000. 思路:        简单矩阵快速幂,好久没刷矩阵题了,先找个最简单的练练手,总结下矩阵推理过程,其实比较简单,关键 ...

  6. poj 3734 矩阵快速幂+YY

    题目原意:N个方块排成一列,每个方块可涂成红.蓝.绿.黄.问红方块和绿方块都是偶数的方案的个数. sol:找规律列递推式+矩阵快速幂 设已经染完了i个方块将要染第i+1个方块. a[i]=1-i方块中 ...

  7. POJ 3233 矩阵快速幂&二分

    题意: 给你一个n*n的矩阵 让你求S: 思路: 只知道矩阵快速幂 然后nlogn递推是会TLE的. 所以呢 要把那个n换成log 那这个怎么搞呢 二分! 当k为偶数时: 当k为奇数时: 就按照这么搞 ...

  8. poj 3744 矩阵快速幂+概率dp

    题目大意: 输入n,代表一位童子兵要穿过一条路,路上有些地方放着n个地雷(1<=n<=10).再输入p,代表这位童子兵非常好玩,走路一蹦一跳的.每次他在 i 位置有 p 的概率走一步到 i ...

  9. Blocks(POJ 3734 矩阵快速幂)

    Blocks Input The first line of the input contains an integer T(1≤T≤100), the number of test cases. E ...

随机推荐

  1. Python 面向对象进阶(二)

    1. 垃圾回收 小整数对象池 Python对小整数的定义是 [-5, 257),这些整数对象是提前建立好的; 在一个Python程序中,所有位于这个范围内的整数,使用的都是同一个对象; 单个字符共用对 ...

  2. Java-小技巧-005-double类型保留两位小数4种方法

    4种方法,都是四舍五入,例: import java.math.BigDecimal; import java.text.DecimalFormat; import java.text.NumberF ...

  3. instanceof判断参数是否是给定的类型

    if(ofj instanceof CLOB) {//判断ofj是否是CLOB类型,如果是则把CLOB内容解析出来,放入TZNR字段中并返回 CLOB ft = (CLOB)ofj; String c ...

  4. 『HTML5实现人工智能』小游戏《井字棋》发布,据说IQ上200才能赢【算法&代码讲解+资源打包下载】

    一,什么是TicTacToe(井字棋) 本游戏为在下用lufylegend开发的第二款小游戏.此游戏是大家想必大家小时候都玩过,因为玩它很简单,只需要一张草稿纸和一只笔就能开始游戏,所以广受儿童欢迎. ...

  5. PAT 1146 Topological Order[难]

    1146 Topological Order (25 分) This is a problem given in the Graduate Entrance Exam in 2018: Which o ...

  6. windows平台mongoDB安装配置

    一.首先安装mongodb 1.官网下载mongoDB:http://www.mongodb.org/downloads,选择windows平台.安装时,一路next就可以了.我安装在了F:\mong ...

  7. 马尔可夫随机场(Markov random fields) 概率无向图模型 马尔科夫网(Markov network)

    上面两篇博客,解释了概率有向图(贝叶斯网),和用其解释条件独立.本篇将研究马尔可夫随机场(Markov random fields),也叫无向图模型,或称为马尔科夫网(Markov network) ...

  8. 斯坦福第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 I 2.4  代价函数的直观理解 I ...

  9. luaIDE选择

    luaIDE选择 本人测试过各种luaIDE, 包括luaStudio, 不过我还是推荐eclipse+ldt的方式: http://zengrong.net/post/1951.htm 原因如下: ...

  10. zip解压破解

    B2TQZJEpzFAUHcHaTQRjtKi8C4Q5mpFsBFLYsNTfCs7ZD65X