本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。

本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!

题目链接:codeforces600E

解法一:$O(nlog^2n)$

正解:启发式合并

解题报告:

  这道题求的是每个点的子树内的出现次数最大的数字的和。

  考虑启发式合并,我用$col[x]$的$map$表示$x$的子树内的每种权值的出现次数,$sum[x]$的$map$表示$x$的子树内每种出现次数的权值和。

  那么我在将儿子节点和父亲节点合并的时候只需要根据$col$的$size$,把小的往大的里面暴力合并就可以了。

  $get$了$map$的正确姿势…

//It is made by ljh2000
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
#include <complex>
#include <bitset>
using namespace std;
typedef long long LL;
typedef long double LB;
const double pi = acos(-1);
const int MAXN = 100011;
const int MAXM = 200011;
int n,a[MAXN],ecnt,first[MAXN],to[MAXM],next[MAXM];
LL ans[MAXN];
map<int,int>col[MAXN];//统计每种颜色的出现次数
map<int,LL>sum[MAXN];//统计每种出现次数的sum
inline void link(int x,int y){ next[++ecnt]=first[x]; first[x]=ecnt; to[ecnt]=y; }
inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline void dfs(int x,int fa){
col[x][a[x]]=1;
sum[x][1]=a[x];
int now,cc;
for(int i=first[x];i;i=next[i]) {
int v=to[i]; if(v==fa) continue;
dfs(v,x);
if(col[x].size()<col[v].size()) swap(col[x],col[v]),swap(sum[x],sum[v]);//小的往大的上面合并!!!
for(map<int,int>::iterator it=col[v].begin();it!=col[v].end();it++) {
now=it->first; cc=it->second;
if(col[x].count(now)>0) {
sum[x][col[x][now]]-=now;
col[x][now]+=cc;
sum[x][col[x][now]]+=now;
}
else col[x][now]=col[v][now],sum[x][col[x][now]]+=now;
}
}
map<int,LL>::iterator it=sum[x].end();
it--;//最大的应该是end-1,end是一个空指针...
ans[x]=it->second;
} inline void work(){
n=getint(); for(int i=1;i<=n;i++) a[i]=getint(); int x,y;
for(int i=1;i<n;i++) { x=getint(); y=getint(); link(x,y); link(y,x); }
dfs(1,0);
for(int i=1;i<=n;i++)
printf("%I64d ",ans[i]);
} int main()
{
work();
return 0;
}
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。

  

解法二:$O(nlogn)$

正解:$dsu$ $on$ $tree$

解题报告:

  学了一发$dsu$ $on$ $tree$。

  这个算法主要处理的是对于树上某一特征的不带修改子树统计问题,通常可以做到$O(nlogn)$。

  大概做法就是先链剖,然后我考虑用一个全局数组$cnt$来表示某个值的出现次数,如果是暴力的做法的话,就是每次处理一个节点时暴力把整棵子树的贡献加入,同时更新答案,做完之后暴力把整棵子树的贡献消除,递归做儿子节点。

  而$dsu$ $on$ $tree$的做法就是,每次先递归处理完轻儿子,然后再做重儿子。

  到了统计答案的时候,同样是把贡献暴力加入,但是假如这个点是他的父亲节点的重儿子,那么不消除贡献(所以加入贡献的时候注意不要加到重儿子上去了),往上走,直到某个点是父亲的轻儿子再把整棵子树的贡献消除即可。

//It is made by ljh2000
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
#include <complex>
#include <bitset>
using namespace std;
typedef long long LL;
typedef long double LB;
typedef complex<double> C;
const double pi = acos(-1);
const int MAXN = 100011;
const int MAXM = 200011;
int n,a[MAXN],cnt[MAXN],ecnt,first[MAXN],to[MAXM],next[MAXM],size[MAXN],son[MAXN],Son;
LL sum,Max,ans[MAXN];
inline void link(int x,int y){ next[++ecnt]=first[x]; first[x]=ecnt; to[ecnt]=y; }
inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline void dfs(int x,int fa){
size[x]=1;
for(int i=first[x];i;i=next[i]) {
int v=to[i]; if(v==fa) continue;
dfs(v,x); size[x]+=size[v];
if(size[v]>size[son[x]]) son[x]=v;
}
} inline void add(int x,int fa,int val){
cnt[ a[x] ]+=val;
if(cnt[ a[x] ]>Max) Max=cnt[ a[x] ],sum=a[x];
else if(cnt[ a[x] ]==Max) sum+=a[x];
for(int i=first[x];i;i=next[i]) {
int v=to[i]; if(v==fa || v==Son) continue;
add(v,x,val);
}
} inline void solve(int x,int fa,bool T){
for(int i=first[x];i;i=next[i]) {
int v=to[i]; if(v==fa || v==son[x]) continue;
solve(v,x,1);
} if(son[x])
solve(son[x],x,0),Son=son[x]; add(x,fa,1); Son=0;
ans[x]=sum; if(T==1)
add(x,fa,-1),sum=Max=0;
} inline void work(){
n=getint(); for(int i=1;i<=n;i++) a[i]=getint();
int x,y; for(int i=1;i<n;i++) { x=getint(); y=getint(); link(x,y); link(y,x); }
dfs(1,0);
solve(1,0,1);
for(int i=1;i<=n;i++)
printf("%I64d ",ans[i]);
} int main()
{
work();
return 0;
}
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。

  

codeforces600E Lomsat gelral的更多相关文章

  1. [Codeforces600E] Lomsat gelral(树上启发式合并)

    [Codeforces600E] Lomsat gelral(树上启发式合并) 题面 给出一棵N个点的树,求其所有子树内出现次数最多的颜色编号和.如果多种颜色出现次数相同,那么编号都要算进答案 N≤1 ...

  2. CodeForces600E Lomsat gelral 线段树合并

    从树上启发式合并搜出来的题 然而看着好像线段树合并就能解决??? 那么就用线段树合并解决吧 维护\(max, sum\)表示值域区间中的一个数出现次数的最大值以及所有众数的和即可 复杂度\(O(n \ ...

  3. codeforces600E. Lomsat gelral(dsu on tree)

    dsu on tree先分轻重儿子先处理轻边,再处理重儿子再加上轻儿子的答案 #include<iostream> #include<cstdio> #include<q ...

  4. codeforces600E Lomsat gelral【线段树合并/DSU】

    第一次AC这道题,是三年前的一个下午,也许晚上也说不定.当时使用的\(DSU\) \(on\) \(tree\)算法,如今已经淡忘,再学习新的算法过程中,却与旧物重逢.生活中充满不可知会的相遇,即使重 ...

  5. Educational Codeforces Round 2 E. Lomsat gelral 启发式合并map

    E. Lomsat gelral Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/600/prob ...

  6. Codeforces 600 E - Lomsat gelral

    E - Lomsat gelral 思路1: 树上启发式合并 代码: #include<bits/stdc++.h> using namespace std; #define fi fir ...

  7. 【CF600E】 Lomsat gelral

    CF600E Lomsat gelral Solution 考虑一下子树的问题,我们可以把一棵树的dfn序搞出来,那么子树就是序列上的一段连续的区间. 然后就可以莫队飞速求解了. 但是这题还有\(\T ...

  8. 【CodeForces】600 E. Lomsat gelral (dsu on tree)

    [题目]E. Lomsat gelral [题意]给定n个点的树,1为根,每个点有一种颜色ci,一种颜色占领一棵子树当且仅当子树内没有颜色的出现次数超过它,求n个答案——每棵子树的占领颜色的编号和Σc ...

  9. 【CF600E】Lomsat gelral(dsu on tree)

    [CF600E]Lomsat gelral(dsu on tree) 题面 洛谷 CF题面自己去找找吧. 题解 \(dsu\ on\ tree\)板子题 其实就是做子树询问的一个较快的方法. 对于子树 ...

随机推荐

  1. 使用python的logging模块(转)

    一.从一个使用场景开始 开发一个日志系统, 既要把日志输出到控制台, 还要写入日志文件 import logging # 创建一个logger logger = logging.getLogger(' ...

  2. LRU算法的Python实现

    http://flychao88.iteye.com/blog/1977653文章中介绍了常见的几种缓存淘汰策略 LRU:least recently used,最近最少使用算法.其实就是按使用时间倒 ...

  3. MySQL 一些让人容易忽视的知识点

    一下都是MySQL在实际开发中,经常容易让人忽视的点,希望对您有帮助,帮您越过这些坑. 一:MySQL AND优先级大于OR 今天上班时在写一个业务的时候又发现了一个MySQL的问题: 我们的业务是这 ...

  4. ftp 服务器搭建

    一.安装 yum -y install vsftpd //通过yum来安装vsftpd chkconfig vsftpd on //设置为开机启动 vi /etc/vsftpd/vsftpd.conf ...

  5. 1. testNG+Maven 环境搭建

    一:使用的工具 : TestNG 6.9.10 Maven 3.5 IDEA 二:创建maven项目,在pom.xml添加依赖 <?xml version="1.0" enc ...

  6. R语言 dbWriteTable 写入数据库 为空和乱码问题

    在windows环境下 用RMySQL 写入数据库中文数据为空 或者乱码问题. 找了下资料 一般情况是 用 insert 语句插入,结合现有业务有点麻烦,放弃了. 还有一种方式换平台,由于经常在win ...

  7. oralce 查看执行计划

    SQL的执行计划实际代表了目标SQL在Oracle数据库内部的具体执行步骤,作为调优,只有知道了优化器选择的执行计划是否为当前情形下最优的执行计划,才能够知道下一步往什么方向. 执行计划的定义:执行目 ...

  8. Java读取CSV和XML文件方法

    游戏开发中,读取策划给的配置表是必不可少的,我在之前公司,策划给的是xml表来读取,现在公司策划给的是CSV表来读取,其实大同小异,也并不是什么难点,我就简单分享下Java如何读取XML文件和CSV文 ...

  9. beego——session模块

    session介绍 session是一个独立的模块,即你可以那这个模块应用于其它Go程序中. session模块是用来存储客户端用户,session目前只支持cookie方式的请求,如果客户端不支持c ...

  10. 『NiFi 学习之路』自定义 —— 组件的自定义及使用

    一.概述 许多业务仅仅使用官方提供的组件不能够满足性能上的需求,往往要通过高度可定制的组件来完成特定的业务需求. 而 NiFi 提供了自定义组件的这种方式. 二.自定义 Processor 占坑待续 ...