Computer

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 32263    Accepted Submission(s): 4472

Problem Description
A school bought the first computer some time ago(so this computer's id is 1). During the recent years the school bought N-1 new computers. Each new computer was connected to one of settled earlier. Managers of school are anxious about slow functioning of the net and want to know the maximum distance Si for which i-th computer needs to send signal (i.e. length of cable to the most distant computer). You need to provide this information. 

Hint: the example input is corresponding to this graph. And from the graph, you can see that the computer 4 is farthest one from 1, so S1 = 3. Computer 4 and 5 are the farthest ones from 2, so S2 = 2. Computer 5 is the farthest one from 3, so S3 = 3. we also get S4 = 4, S5 = 4.

 
Input
Input file contains multiple test cases.In each case there is natural number N (N<=10000) in the first line, followed by (N-1) lines with descriptions of computers. i-th line contains two natural numbers - number of computer, to which i-th computer is connected and length of cable used for connection. Total length of cable does not exceed 10^9. Numbers in lines of input are separated by a space.
 
Output
For each case output N lines. i-th line must contain number Si for i-th computer (1<=i<=N).
 
Sample Input
5
1 1
2 1
3 1
1 1
 
Sample Output
3
2
3
4
4
 
Author
scnu
        给出一棵树,边上有权值,计算树上每个顶点以自己为起点可以走的最长的路径长度。
        经典的树dp,这条最长路径可能是向下走也可能是想自己的父亲走来达到,我们先dfs1计算出所有点向下走达到的最长路径和次长路径,并记录走向的是哪个儿子。然后在dfs2里计算向上走的最长路径,与已知的两条作比较选出最优的。
     记录次长路径的必要性在于父亲的最长路可能就是走向的当前的节点,这样显然不能走重边,如果我们有父亲的次长路(存在的话),那么一定能沿着父亲回去。
     很少写这种,想了一下午总算1A了。
       

 #include<bits/stdc++.h>
using namespace std;
#define LL long long
#define pii pair<int,int>
#define mp make_pair
const int MAXN=;
int fm[MAXN],sm[MAXN];
int fid[MAXN],sid[MAXN];
vector<pii>g[];
int N;
void dfs1(int u,int fa)
{
fm[u]=sm[u]=;
fid[u]=sid[u]=;
for(int i=;i<g[u].size();++i){
int v=g[u][i].first;
int w=g[u][i].second;
if(v==fa) continue;
dfs1(v,u);
if(fm[v]+w>sm[u]){
sm[u]=fm[v]+w;
sid[u]=v;
if(sm[u]>fm[u]){
swap(fm[u],sm[u]);
swap(fid[u],sid[u]);
}
}
}
}
void dfs2(int u,int fa,int w)
{
if(fm[fa]+w>sm[u]&&fid[fa]!=u){
sm[u]=fm[fa]+w;
sid[u]=fa;
if(sm[u]>fm[u]){
swap(fm[u],sm[u]);
swap(fid[u],sid[u]);
}
}
if(sm[fa]+w>sm[u]&&sid[fa]!=u){
sm[u]=sm[fa]+w;
sid[u]=fa;
if(sm[u]>fm[u]){
swap(fm[u],sm[u]);
swap(fid[u],sid[u]);
}
}
for(int i=;i<g[u].size();++i){
int v=g[u][i].first;
int ww=g[u][i].second;
if(v==fa) continue;
dfs2(v,u,ww);
}
}
int main()
{
while(cin>>N){int u,v,w;
for(int i=;i<=N;++i){
scanf("%d%d",&v,&w);
g[i].push_back(mp(v,w));
g[v].push_back(mp(i,w));
}
dfs1(,);
/*for(int i=1;i<=N;++i)
cout<<fm[i]<<' '<<fid[i]<<' '<<sm[i]<<' '<<sid[i]<<endl;*/
dfs2(,,);
for(int i=;i<=N;++i) printf("%d\n",max(fm[i],sm[i]));
for(int i=;i<=N;++i)g[i].clear();
}
return ;
} /*
3 2 1 5
2 3 0 0
1 4 0 0
0 0 0 0
0 0 0 0
*/

HDU-2196-树形dp/计算树上固定起点的最长路的更多相关文章

  1. HDU 2196树形DP(2个方向)

    HDU 2196 [题目链接]HDU 2196 [题目类型]树形DP(2个方向) &题意: 题意是求树中每个点到所有叶子节点的距离的最大值是多少. &题解: 2次dfs,先把子树的最大 ...

  2. HDU 2196 树形DP Computer

    题目链接:  HDU 2196 Computer 分析:   先从任意一点开始, 求出它到其它点的最大距离, 然后以该点为中心更新它的邻点, 再用被更新的点去更新邻点......依此递推 ! 代码: ...

  3. hdu 2196 树形dp

    思路:先求以1为根时,每个节点到子节点的最大长度.然后再次从1进入进行更新. #include<iostream> #include<cstring> #include< ...

  4. hdu 4123 树形DP+RMQ

    http://acm.hdu.edu.cn/showproblem.php? pid=4123 Problem Description Bob wants to hold a race to enco ...

  5. HDU 1520 树形dp裸题

    1.HDU 1520  Anniversary party 2.总结:第一道树形dp,有点纠结 题意:公司聚会,员工与直接上司不能同时来,求最大权值和 #include<iostream> ...

  6. HDU 1561 树形DP入门

    The more, The Better Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  7. hdu 4607 (树形DP)

    当时比赛的时候我们找出来只要求出树的最长的边的节点数ans,如果要访问点的个数n小于ans距离直接就是n-1 如果大于的话就是(n-ans)*2+ans-1,当时求树的直径难倒我们了,都不会树形dp ...

  8. HDU 1520 树形DP入门

    HDU 1520 [题目链接]HDU 1520 [题目类型]树形DP &题意: 某公司要举办一次晚会,但是为了使得晚会的气氛更加活跃,每个参加晚会的人都不希望在晚会中见到他的直接上司,现在已知 ...

  9. codevs 1380/HDU 1520 树形dp

    1380 没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 回到问题 题目描述 Description Ural大学有N个职员 ...

随机推荐

  1. 20165324 《Java程序设计》第3周学习总结

    20165324 <Java程序设计>第3周学习总结 教材学习内容总结 本周学习内容如下: 编程语言思想 面向过程语言的核心是编写解决某个问题的代码块:在面向对象语言中,最核心的内容是对象 ...

  2. Subime3 快捷键

    实用快捷键 Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+ ...

  3. H5端js实现图片放大滑动查看-插件photoswipe的使用

    最近在开发项目的时候,遇到一个需求,需要移动端实现放大查看图片的功能,然后我就在网上搜索了一下资料,看到了photoswipe这个插件,后来试了试,确实挺好用的,它可以实现手势放大缩小查看图片,左右滑 ...

  4. XDU 1031

    #include<stdio.h> #define maxn 1005 int c[maxn][maxn]; int gcd(int a,int b){ ?a:gcd(b,a%b); } ...

  5. 写入Csv

    //定义文件输出流  FILE *f; f = fopen("a.csv" , "wb"); fprintf(f,"aaa,23,sdf\n" ...

  6. https://www.cnblogs.com/skywang12345/category/455711.html

    https://www.cnblogs.com/skywang12345/category/455711.html

  7. [日志]logback告警

    开发过程中,难免会有发生错误或异常的时候,有些是需要及时通知到相关开发人员的.logback可以通过简单的配置达到邮件告警的目的. 一.错误告警 如下配置,所有Error级别的log发送邮件告警给re ...

  8. Linux学习笔记之Linux启动引导过程

    早期时,启动一台计算机意味着要给计算机喂一条包含引导程序的纸带,或者手工使用前端面板地址/数据/控制开关来加载引导程序.尽管目前的计算机已经装备了很多工具来简化引导过程,但是这一切并没有对整个过程进行 ...

  9. Python面试题之列表推导式

    题目要求: 生成如下列表 [[0,0,0,0,0,],[0,1,2,3,4,],[0,2,4,6,8,],[0,3,6,9,12,]] (考察列表生成式和基本逻辑推理) 方法1: list1 = [] ...

  10. Jquery4 过滤选择器

    学习要点: 1.基本过滤器 2.内容过滤器 3.可见性过滤器 4.子元素过滤器 5.其他方法 过滤选择器简称:过滤器.它其实也是一种选择器,而这种选择器类似 CSS3里的伪类,可以让不支持 CSS3 ...