CF1106F Lunar New Year and a Recursive Sequence(矩阵快速幂+bsgs+exgcd)
题面
前置芝士
\(BSGS\)
什么?你不会\(BSGS\)?百度啊
原根
对于素数\(p\)和自然数\(a\),如果满足\(a^x\equiv 1\pmod{p}\)的最小的\(x\)为\(p-1\),那么\(a\)就是\(p\)的一个原根
离散对数
对于素数\(p\),以及\(p\)的一个原根\(g\),定义\(y\)为\(x\)的离散对数,当且仅当\(g^y\equiv x\pmod{p}\),记\(y\)为\(ind_g x\)。不难发现原数和离散对数可以一一对应。也不难发现离散对数用\(bsgs\)就可以求得
题解
考虑把题目转化一下,因为\(f_{1,...,k-1}\)都是\(1\),只有\(f_k\)不是\(1\),那么最终的\(f_n\)一定是形如\({f_k}^x\)的形式
那么我们只考虑上面的次数的转移,转移式就可以从一个前面一堆乘起来变成前面一堆加起来的形式。矩阵快速幂求出最终的\(f_n\)中的次数就行了
那么就是一个\({f_k}^x\equiv f_n\pmod{p}\)的形式了,其中\(x\)我们之前已经用矩阵快速幂算出来了
于是就是关于形如\(x^a\equiv b\pmod{p}\)形式的方程求解的问题了
考虑两边取离散对数,学过\(NTT\)的都知道\(998244353\)的原根是\(3\),那么就可以转化成\(a\times ind_g x\equiv ind_g b\pmod{p-1}\),用\(exgcd\)解出\(ind_gx\),然后代入计算就可以了
于是问题就解决了
//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res=1,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=105,P=998244353,g=3;
inline int add(R int x,R int y,R int P){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y,R int P){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y,R int P){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y,R int P){
R int res=1;
for(;y;y>>=1,x=mul(x,x,P))if(y&1)res=mul(res,x,P);
return res;
}
int n,kkk,m;
struct Matrix{
int a[N][N];
Matrix(){memset(a,0,sizeof(a));}
inline int* operator [](const R int &x){return a[x];}
Matrix operator *(Matrix b){
Matrix res;
fp(i,1,kkk)fp(k,1,kkk)fp(j,1,kkk)res[i][j]=add(res[i][j],mul(a[i][k],b[k][j],P-1),P-1);
return res;
}
}A,B;
Matrix ksm(Matrix x,int y){
Matrix res;fp(i,1,kkk)res[i][i]=1;
for(;y;y>>=1,x=x*x)if(y&1)res=res*x;
return res;
}
map<int,int>mp;
int bsgs(int x){
int m=sqrt(P)+1;mp.clear();
for(R int i=0,res=x;i<m;++i,res=1ll*res*g%P)mp[res]=i;
for(R int i=1,tmp=ksm(g,m,P),res=tmp;i<=m+1;++i,res=1ll*res*tmp%P)
if(mp.count(res))return i*m-mp[res];
}
int exgcd(int a,int b,int &x,int &y){
if(!b)return x=1,y=0,a;
int d=exgcd(b,a%b,y,x);
y-=a/b*x;return d;
}
int a,b,c,d,x,y,t,res;
int main(){
kkk=read();
fp(i,1,kkk)B[i][1]=read();
fp(i,1,kkk-1)B[i][i+1]=1;
A[1][1]=1;
n=read(),m=read();
A=A*ksm(B,n-kkk);
c=bsgs(m),a=A[1][1],b=P-1;
d=exgcd(a,b,x,y);
if(c%d)return puts("-1"),0;
t=abs(b/d);
x=(1ll*x*(c/d)%t+t)%t;
// printf("%d %d\n",x,bsgs(m));
res=ksm(g,x+P-1,P);
printf("%d\n",res);
return 0;
}
CF1106F Lunar New Year and a Recursive Sequence(矩阵快速幂+bsgs+exgcd)的更多相关文章
- CF1106F Lunar New Year and a Recursive Sequence——矩阵快速幂&&bsgs
题意 设 $$f_i = \left\{\begin{matrix}1 , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i < k\\ ...
- HDU5950 Recursive sequence (矩阵快速幂加速递推) (2016ACM/ICPC亚洲赛区沈阳站 Problem C)
题目链接:传送门 题目: Recursive sequence Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total ...
- HDU5950 Recursive sequence —— 矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-5950 Recursive sequence Time Limit: 2000/1000 MS (Java/Others) ...
- HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...
- hdu 5950 Recursive sequence 矩阵快速幂
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- HDU5950 Recursive sequence (矩阵快速幂)
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- 5950 Recursive sequence (矩阵快速幂)
题意:递推公式 Fn = Fn-1 + 2 * Fn-2 + n*n,让求 Fn; 析:很明显的矩阵快速幂,因为这个很像Fibonacci数列,所以我们考虑是矩阵,然后我们进行推公式,因为这样我们是无 ...
- CF1106F Lunar New Year and a Recursive Sequence
题目链接:CF1106F Lunar New Year and a Recursive Sequence 大意:已知\(f_1,f_2,\cdots,f_{k-1}\)和\(b_1,b_2,\cdot ...
- hdu-5667 Sequence(矩阵快速幂+费马小定理+快速幂)
题目链接: Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
随机推荐
- Linux实战教学笔记52:GlusterFS分布式存储系统
一,分布式文件系统理论基础 1.1 分布式文件系统出现 计算机通过文件系统管理,存储数据,而现在数据信息爆炸的时代中人们可以获取的数据成指数倍的增长,单纯通过增加硬盘个数来扩展计算机文件系统的存储容量 ...
- 纸牌游戏CardBattle的设计与开发
- ajax请求后台有时走有时不走
ajax请求后台有时走有时不走 ajax请求后台有时走有时不走,是因为没有将请求设置为同步方式,async:false,(默认为true即异步).如果不想使用缓存可以将cache:false,例如 ...
- linux系统的命令组与函数
一.命令组 许多时候,我们在shell操作上,需要在一定条件下一次执行多个命令,也就是说,要么不执行,要么就全执行,而不是每次依序的判断是否要执行下一个命令.或是,需要从一些命令执行优先次顺中得到豁免 ...
- 返回JSON到前台的对象属性设置
1.项目中使用JSON的第三方架包:jackson-annotations-2.8.0.jar 2.可以将对象的属性返回进行相应的处理 比如格式化时间.密码敏感等属性 如:User.java pack ...
- 无网络安装mysql步骤
1. 先安装Microsoft Visual C++ 2010 运行环境,运行vcredist_x86.exe文件: 2. 安装MySql数据库,运行mysql-installer-community ...
- LoadRunner11学习记录七 -- 负载生成器、事务&集合点顺序、HTML&URL录制
1.什么情况下用到负载生成器? 当需要使用多台测试机对同一服务器同时压力测试时,需要配置负载生成器. 2.LoadRunner中事务和集合点的放置顺序问题 1)事务放在集合点前面 这时事务的时间包含了 ...
- 白盒测试实践--Day5
累计完成任务情况: 阶段内容 参与人 完成个人情况说明并提交作业 全体 汇总作业,查漏补缺,完成代码测试总结 小靳.小龙 完成测试小结 小黄.小尹 完成静态代码检查结果报告 小靳 完成JUnit脚本编 ...
- mysql 事物ACID和隔离级别
⑴ 原子性(Atomicity) 原子性是指事务包含的所有操作要么全部成功,要么全部失败回滚,这和前面两篇博客介绍事务的功能是一样的概念,因此事务的操作如果成功就必须要完全应用到数据库,如果操作失败则 ...
- .NET开源MSSQL、Redis监控产品Opserver之Redis配置
安全与基础配置地址:http://www.cnblogs.com/xiaopotian/p/6898310.html edis监控数据实例的加载可以查看Opserver.Core项目data/Redi ...