Building roads
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 8153   Accepted: 2772

Description

Farmer John's farm has N barns, and there are some cows that live in each barn. The cows like to drop around, so John wants to build some roads to connect these barns. If he builds roads for every pair of different barns, then he must build N * (N - 1) / 2 roads, which is so costly that cheapskate John will never do that, though that's the best choice for the cows.

Clever John just had another good idea. He first builds two
transferring point S1 and S2, and then builds a road connecting S1 and
S2 and N roads connecting each barn with S1 or S2, namely every barn
will connect with S1 or S2, but not both. So that every pair of barns
will be connected by the roads. To make the cows don't spend too much
time while dropping around, John wants to minimize the maximum of
distances between every pair of barns.

That's not the whole story because there is another troublesome
problem. The cows of some barns hate each other, and John can't connect
their barns to the same transferring point. The cows of some barns are
friends with each other, and John must connect their barns to the same
transferring point. What a headache! Now John turns to you for help.
Your task is to find a feasible optimal road-building scheme to make the
maximum of distances between every pair of barns as short as possible,
which means that you must decide which transferring point each barn
should connect to.

We have known the coordinates of S1, S2 and the N barns, the pairs
of barns in which the cows hate each other, and the pairs of barns in
which the cows are friends with each other.

Note that John always builds roads vertically and horizontally, so
the length of road between two places is their Manhattan distance. For
example, saying two points with coordinates (x1, y1) and (x2, y2), the
Manhattan distance between them is |x1 - x2| + |y1 - y2|.

Input

The
first line of input consists of 3 integers N, A and B (2 <= N <=
500, 0 <= A <= 1000, 0 <= B <= 1000), which are the number
of barns, the number of pairs of barns in which the cows hate each other
and the number of pairs of barns in which the cows are friends with
each other.

Next line contains 4 integer sx1, sy1, sx2, sy2, which are the
coordinates of two different transferring point S1 and S2 respectively.

Each of the following N line contains two integer x and y. They are
coordinates of the barns from the first barn to the last one.

Each of the following A lines contains two different integers i and
j(1 <= i < j <= N), which represent the i-th and j-th barns in
which the cows hate each other.

The same pair of barns never appears more than once.

Each of the following B lines contains two different integers i and
j(1 <= i < j <= N), which represent the i-th and j-th barns in
which the cows are friends with each other. The same pair of barns never
appears more than once.

You should note that all the coordinates are in the range [-1000000, 1000000].

Output

You
just need output a line containing a single integer, which represents
the maximum of the distances between every pair of barns, if John
selects the optimal road-building scheme. Note if there is no feasible
solution, just output -1.

Sample Input

4 1 1
12750 28546 15361 32055
6706 3887
10754 8166
12668 19380
15788 16059
3 4
2 3

Sample Output

53246

Source

[Submit]   [Go Back]   [Status]   [Discuss]

考虑二分答案,然后根据题目给出的限制以及这个二分出来的距离限制建图,2-SAT解决。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define mem(a) memset(a,0,sizeof(a))
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
#define For(i,x) for (int i=h[x],k; i; i=nxt[i])
using namespace std; const int N=,M=N*N*;
int a,b,n,mx,ans,cnt,scc,top,L,R,tim,dis,x1,y1,x2,y2,x,y,dis1[N],dis2[N],ax[N],ay[N],bx[N],by[N];
int to[M],nxt[M],q[N],dfn[N],inq[N],h[N],low[N],bel[N];
void add(int u,int v){ to[++cnt]=v; nxt[cnt]=h[u]; h[u]=cnt; } void init(){ cnt=top=scc=tim=; mem(h); mem(dfn); mem(inq); } int cal(int x1,int y1,int x2,int y2){ return abs(x2-x1)+abs(y2-y1); } void tarjan(int x){
dfn[x]=low[x]=++tim; inq[x]=; q[++top]=x;
For(i,x) if (!dfn[k=to[i]]) tarjan(k),low[x]=min(low[x],low[k]);
else if (inq[k]) low[x]=min(low[x],dfn[k]);
if (dfn[x]==low[x]){
scc++; int t;
do { t=q[top--]; bel[t]=scc; inq[t]=; }while(t!=x);
}
} bool jud(int mid){
init();
rep(i,,n) rep(j,i+,n){
if (dis1[i]+dis1[j]>mid) add(i,n+j),add(j,n+i);
if (dis2[i]+dis2[j]>mid) add(i+n,j),add(j+n,i);
if (dis1[i]+dis2[j]+dis>mid) add(i,j),add(j+n,i+n);
if (dis2[i]+dis1[j]+dis>mid) add(i+n,j+n),add(j,i);
}
rep(i,,a) add(ax[i],ay[i]+n),add(ay[i]+n,ax[i]),add(ay[i],ax[i]+n),add(ax[i]+n,ay[i]);
rep(i,,b) add(bx[i],by[i]),add(by[i],bx[i]),add(bx[i]+n,by[i]+n),add(by[i]+n,bx[i]+n);
rep(i,,*n) if (!dfn[i]) tarjan(i);
rep(i,,n) if (bel[i]==bel[i+n]) return ;
return ;
} int main(){
freopen("poj2749.in","r",stdin);
freopen("poj2749.out","w",stdout);
while (~scanf("%d%d%d",&n,&a,&b)){
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
dis=cal(x1,y1,x2,y2); mx=;
rep(i,,n){
scanf("%d%d",&x,&y);
dis1[i]=cal(x,y,x1,y1); dis2[i]=cal(x,y,x2,y2);
mx=max(mx,max(dis1[i],dis2[i]));
}
mx=mx*+dis;
rep(i,,a) scanf("%d%d",&ax[i],&ay[i]);
rep(i,,b) scanf("%d%d",&bx[i],&by[i]);
int L=,R=mx; ans=-;
while (L<=R){
int mid=(L+R)>>;
if (jud(mid)) ans=mid,R=mid-; else L=mid+;
}
printf("%d\n",ans);
}
return ;
}

[POJ2749]Building roads(2-SAT)的更多相关文章

  1. POJ2749 Building roads

    嘟嘟嘟 最近把21天漏的给不上. 今天重温了一下2-SAT,感觉很简单.就是把所有条件都转化成如果--必然能导出--.然后就这样连边建图,这样一个强连通分量中的所有点必然都是真或者假.从而根据这个点拆 ...

  2. POJ2749 Building roads 【2-sat】

    题目 Farmer John's farm has N barns, and there are some cows that live in each barn. The cows like to ...

  3. poj 3625 Building Roads

    题目连接 http://poj.org/problem?id=3625 Building Roads Description Farmer John had just acquired several ...

  4. poj 2749 Building roads (二分+拆点+2-sat)

    Building roads Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6229   Accepted: 2093 De ...

  5. BZOJ 1626: [Usaco2007 Dec]Building Roads 修建道路( MST )

    计算距离时平方爆了int结果就WA了一次...... ------------------------------------------------------------------------- ...

  6. HDU 1815, POJ 2749 Building roads(2-sat)

    HDU 1815, POJ 2749 Building roads pid=1815" target="_blank" style="">题目链 ...

  7. Building roads

    Building roads Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...

  8. bzoj1626 / P2872 [USACO07DEC]道路建设Building Roads

    P2872 [USACO07DEC]道路建设Building Roads kruskal求最小生成树. #include<iostream> #include<cstdio> ...

  9. bzoj 1626: [Usaco2007 Dec]Building Roads 修建道路 -- 最小生成树

    1626: [Usaco2007 Dec]Building Roads 修建道路 Time Limit: 5 Sec  Memory Limit: 64 MB Description Farmer J ...

随机推荐

  1. 2017ACM暑期多校联合训练 - Team 2 1003 HDU 6047 Maximum Sequence (线段树)

    题目链接 Problem Description Steph is extremely obsessed with "sequence problems" that are usu ...

  2. 天梯赛L2-008 最长对称子串 (字符串处理)

    对给定的字符串,本题要求你输出最长对称子串的长度.例如,给定"Is PAT&TAP symmetric?",最长对称子串为"s PAT&TAP s&quo ...

  3. 1、编写第一个java程序--Hello—World

    1.下载JDK8.0文件 下载网址:https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.ht ...

  4. Pyrhon代码的中文问题

    解决代码中出现中文乱码的问题: 使用中文需要在第一行声明编码#encoding=utf-8 或者#coding=utf-8 python只检查#.coding和编码字符串,所以你可能回见到下面的声明方 ...

  5. 使用linux下的C操作SQLLITE

    from: http://baike.so.com/doc/1529694.html 由于Linux下侧重使用命令,没有win的操作容易上手,所以在测试C操作SQLITE时会比较容易出现错误,给大家做 ...

  6. caffe Python API 之上卷积层(Deconvolution)

    对于convolution: output = (input + 2 * p  - k)  / s + 1; 对于deconvolution: output = (input - 1) * s + k ...

  7. docker简单介绍(资料收集总结)

    [前言] 首先,感谢我的leader总是会问我很多技术的基本资料,让我这个本来对于各种技术只知道操作命令不关注理论知识的人,开始重视理论资料. 关于docker的操作步骤等等,都是之前学习的,现在补上 ...

  8. sendEmail实现邮件报警

    安装 wget http://caspian.dotconf.net/menu/Software/SendEmail/sendEmail-v1.56.tar.gz 或者点击下载 tar -xf sen ...

  9. linux中getmntent setmntent endmntent 用法例子

    mntent 结构是在 <mntent.h> 中定义,如下:               struct mntent {                      char    *mnt ...

  10. Dell服务器iDrac口默认账号密码和IP

    https://blog.csdn.net/artdao1987/article/details/79875528