[POJ2749]Building roads(2-SAT)
Building roads
Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8153 Accepted: 2772 Description
Farmer John's farm has N barns, and there are some cows that live in each barn. The cows like to drop around, so John wants to build some roads to connect these barns. If he builds roads for every pair of different barns, then he must build N * (N - 1) / 2 roads, which is so costly that cheapskate John will never do that, though that's the best choice for the cows.Clever John just had another good idea. He first builds two
transferring point S1 and S2, and then builds a road connecting S1 and
S2 and N roads connecting each barn with S1 or S2, namely every barn
will connect with S1 or S2, but not both. So that every pair of barns
will be connected by the roads. To make the cows don't spend too much
time while dropping around, John wants to minimize the maximum of
distances between every pair of barns.That's not the whole story because there is another troublesome
problem. The cows of some barns hate each other, and John can't connect
their barns to the same transferring point. The cows of some barns are
friends with each other, and John must connect their barns to the same
transferring point. What a headache! Now John turns to you for help.
Your task is to find a feasible optimal road-building scheme to make the
maximum of distances between every pair of barns as short as possible,
which means that you must decide which transferring point each barn
should connect to.We have known the coordinates of S1, S2 and the N barns, the pairs
of barns in which the cows hate each other, and the pairs of barns in
which the cows are friends with each other.Note that John always builds roads vertically and horizontally, so
the length of road between two places is their Manhattan distance. For
example, saying two points with coordinates (x1, y1) and (x2, y2), the
Manhattan distance between them is |x1 - x2| + |y1 - y2|.Input
The
first line of input consists of 3 integers N, A and B (2 <= N <=
500, 0 <= A <= 1000, 0 <= B <= 1000), which are the number
of barns, the number of pairs of barns in which the cows hate each other
and the number of pairs of barns in which the cows are friends with
each other.Next line contains 4 integer sx1, sy1, sx2, sy2, which are the
coordinates of two different transferring point S1 and S2 respectively.Each of the following N line contains two integer x and y. They are
coordinates of the barns from the first barn to the last one.Each of the following A lines contains two different integers i and
j(1 <= i < j <= N), which represent the i-th and j-th barns in
which the cows hate each other.The same pair of barns never appears more than once.
Each of the following B lines contains two different integers i and
j(1 <= i < j <= N), which represent the i-th and j-th barns in
which the cows are friends with each other. The same pair of barns never
appears more than once.You should note that all the coordinates are in the range [-1000000, 1000000].
Output
You
just need output a line containing a single integer, which represents
the maximum of the distances between every pair of barns, if John
selects the optimal road-building scheme. Note if there is no feasible
solution, just output -1.Sample Input
4 1 1
12750 28546 15361 32055
6706 3887
10754 8166
12668 19380
15788 16059
3 4
2 3Sample Output
53246Source
POJ Monthly--2006.01.22,zhucheng
考虑二分答案,然后根据题目给出的限制以及这个二分出来的距离限制建图,2-SAT解决。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mem(a) memset(a,0,sizeof(a))
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
#define For(i,x) for (int i=h[x],k; i; i=nxt[i])
using namespace std; const int N=,M=N*N*;
int a,b,n,mx,ans,cnt,scc,top,L,R,tim,dis,x1,y1,x2,y2,x,y,dis1[N],dis2[N],ax[N],ay[N],bx[N],by[N];
int to[M],nxt[M],q[N],dfn[N],inq[N],h[N],low[N],bel[N];
void add(int u,int v){ to[++cnt]=v; nxt[cnt]=h[u]; h[u]=cnt; } void init(){ cnt=top=scc=tim=; mem(h); mem(dfn); mem(inq); } int cal(int x1,int y1,int x2,int y2){ return abs(x2-x1)+abs(y2-y1); } void tarjan(int x){
dfn[x]=low[x]=++tim; inq[x]=; q[++top]=x;
For(i,x) if (!dfn[k=to[i]]) tarjan(k),low[x]=min(low[x],low[k]);
else if (inq[k]) low[x]=min(low[x],dfn[k]);
if (dfn[x]==low[x]){
scc++; int t;
do { t=q[top--]; bel[t]=scc; inq[t]=; }while(t!=x);
}
} bool jud(int mid){
init();
rep(i,,n) rep(j,i+,n){
if (dis1[i]+dis1[j]>mid) add(i,n+j),add(j,n+i);
if (dis2[i]+dis2[j]>mid) add(i+n,j),add(j+n,i);
if (dis1[i]+dis2[j]+dis>mid) add(i,j),add(j+n,i+n);
if (dis2[i]+dis1[j]+dis>mid) add(i+n,j+n),add(j,i);
}
rep(i,,a) add(ax[i],ay[i]+n),add(ay[i]+n,ax[i]),add(ay[i],ax[i]+n),add(ax[i]+n,ay[i]);
rep(i,,b) add(bx[i],by[i]),add(by[i],bx[i]),add(bx[i]+n,by[i]+n),add(by[i]+n,bx[i]+n);
rep(i,,*n) if (!dfn[i]) tarjan(i);
rep(i,,n) if (bel[i]==bel[i+n]) return ;
return ;
} int main(){
freopen("poj2749.in","r",stdin);
freopen("poj2749.out","w",stdout);
while (~scanf("%d%d%d",&n,&a,&b)){
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
dis=cal(x1,y1,x2,y2); mx=;
rep(i,,n){
scanf("%d%d",&x,&y);
dis1[i]=cal(x,y,x1,y1); dis2[i]=cal(x,y,x2,y2);
mx=max(mx,max(dis1[i],dis2[i]));
}
mx=mx*+dis;
rep(i,,a) scanf("%d%d",&ax[i],&ay[i]);
rep(i,,b) scanf("%d%d",&bx[i],&by[i]);
int L=,R=mx; ans=-;
while (L<=R){
int mid=(L+R)>>;
if (jud(mid)) ans=mid,R=mid-; else L=mid+;
}
printf("%d\n",ans);
}
return ;
}
[POJ2749]Building roads(2-SAT)的更多相关文章
- POJ2749 Building roads
嘟嘟嘟 最近把21天漏的给不上. 今天重温了一下2-SAT,感觉很简单.就是把所有条件都转化成如果--必然能导出--.然后就这样连边建图,这样一个强连通分量中的所有点必然都是真或者假.从而根据这个点拆 ...
- POJ2749 Building roads 【2-sat】
题目 Farmer John's farm has N barns, and there are some cows that live in each barn. The cows like to ...
- poj 3625 Building Roads
题目连接 http://poj.org/problem?id=3625 Building Roads Description Farmer John had just acquired several ...
- poj 2749 Building roads (二分+拆点+2-sat)
Building roads Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6229 Accepted: 2093 De ...
- BZOJ 1626: [Usaco2007 Dec]Building Roads 修建道路( MST )
计算距离时平方爆了int结果就WA了一次...... ------------------------------------------------------------------------- ...
- HDU 1815, POJ 2749 Building roads(2-sat)
HDU 1815, POJ 2749 Building roads pid=1815" target="_blank" style="">题目链 ...
- Building roads
Building roads Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
- bzoj1626 / P2872 [USACO07DEC]道路建设Building Roads
P2872 [USACO07DEC]道路建设Building Roads kruskal求最小生成树. #include<iostream> #include<cstdio> ...
- bzoj 1626: [Usaco2007 Dec]Building Roads 修建道路 -- 最小生成树
1626: [Usaco2007 Dec]Building Roads 修建道路 Time Limit: 5 Sec Memory Limit: 64 MB Description Farmer J ...
随机推荐
- 【BZOJ】2406 矩阵
[算法]二分+有源汇上下界可行流 [题解]上下界 题解参考:[BZOJ2406]矩阵(二分+有源汇有上下界的可行流) #include<cstdio> #include<algori ...
- 【Atcoder】AGC022 C - Remainder Game 搜索
[题目]C - Remainder Game [题意]给定n个数字的序列A,每次可以选择一个数字k并选择一些数字对k取模,花费2^k的代价.要求最终变成序列B,求最小代价或无解.n<=50,0& ...
- NYOJ 409 郁闷的C小加(三) (字符串处理)
题目链接 描述 聪明的你帮助C小加解决了中缀表达式到后缀表达式的转换(详情请参考"郁闷的C小加(一)"),C小加很高兴.但C小加是个爱思考的人,他又想通过这种方法计算一个表达式的值 ...
- VC调用易语言DLL
易语言方面: .版本 .子程序 show, , 公开 ' 本名称子程序用作测试程序用,仅在开发及调试环境中有效,编译发布程序前将被系统自动清空,请将所有用作测试的临时代码放在本子程序中. ***注意不 ...
- P2622 关灯问题II (状态压缩入门)
题目链接: https://www.luogu.org/problemnew/show/P2622 具体思路:暴力,尝试每个开关,然后看所有的情况中存不存在灯全部关闭的情况,在储存所有灯的情况的时候, ...
- D - Frog and Portal (利用斐波那契数列的性质)
题目链接:https://cn.vjudge.net/contest/270201#problem/D 具体思路:利用斐波那契数列的性质,斐波那契数列可以构成任何正整数,所以按照顺序减下去肯定能减到0 ...
- hdu 3729 I'm Telling the Truth(二分匹配_ 匈牙利算法)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3729 I'm Telling the Truth Time Limit: 2000/1000 MS ( ...
- Flask 的一个小应用程序
传说这是Flask 的最小应用程序:hello.py from flask import Flask app = Flask(__name__) @app.route('/') def hello_w ...
- struts的标签
<%@ taglib uri="/struts-tags" prefix="s"%> <%@ taglib uri="/WEB-IN ...
- bugku数字验证绕过正则
题目:http://120.24.86.145:9009/21.php 第6行使用正则匹配如果匹配到$password开头12个字符中有空格则输出flag并执行exit; 12行是正则匹配$passw ...