[NC13C]形态形成场/[Gym100430B]Divisible Substrings

题目大意:

有\(m(m\le26)\)个字符串替换式\(S_i(|S_i\le100|)\),表示某个大写字母对应的字符串。比如\(A\rightarrow BB,B\rightarrow CC0,C\rightarrow 123\),代表 \(A=12312301231230,B=1231230,C=123\)。最后一个对应串只包含数字,其余只包含数字和在它之后的大写字母。字母由'A'开始依次出现,问'A'所代表的字符串有多少子串满足:

  • 这个子串为单个字符'0'或没有前导'0'
  • 把这个子串看作一个十进制数后模\(n(n\le30)\)等于\(0\)。

答案对\(r(r\le10^9)\)取模。

思路:

对于每一段字符串维护其必要信息,每次暴力合并维护信息。具体见代码注释。

源代码:

#include<cstdio>
#include<cctype>
#include<cstring>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
typedef long long int64;
const int K=26,S=101,N=30,D=10;
int n,mod,m;
char s[K][S];
struct Node {
int num,cnt,len,pre[N][N],suf[N];
//num: 值%n
//cnt: 满足条件的子串数
//len: 10^{长度}%n
//pre[i][j]: 前缀num=i、len=j个数
//suf[i]: 后缀num=i个数
};
Node t[D],f[K];
inline void merge(Node &a,const Node &b) {
(a.cnt+=b.cnt)%=mod;
for(register int i=0;i<n;i++) {
for(register int j=0;j<n;j++) {
const int k=(n-(int64)i*j%n)%n;
(a.cnt+=(int64)b.pre[k][j]*a.suf[i]%mod)%=mod;
}
}
for(register int i=0;i<n;i++) {
for(register int j=0;j<n;j++) {
(a.pre[((int64)a.num*j+i)%n][j*a.len%n]+=b.pre[i][j])%=mod;
}
}
int tmp[n];
memcpy(tmp,b.suf,sizeof tmp);
for(register int i=0;i<n;i++) {
(tmp[((int64)i*b.len+b.num)%n]+=a.suf[i])%=mod;
}
memcpy(a.suf,tmp,sizeof tmp);
a.num=((int64)a.num*b.len+b.num)%n;
a.len=(int64)a.len*b.len%n;
}
int main() {
freopen("divisible.in","r",stdin);
freopen("divisible.out","w",stdout);
n=getint(),mod=getint(),m=getint();
for(register int i=0;i<m;i++) {
while(getchar()!='>');
scanf("%s",s[i]);
}
for(register int i=0;i<D;i++) {
t[i].num=i%n;
t[i].cnt=i%n==0;
t[i].len=10%n;
t[i].pre[i%n][10%n]=1;
t[i].suf[i%n]=i!=0;//0本身不可以作为后缀进行合并
}
for(register int i=m-1;i>=0;i--) {
f[i].len=1;
for(register int j=0;s[i][j];j++) {
merge(f[i],isdigit(s[i][j])?t[s[i][j]-'0']:f[s[i][j]-'A']);
}
}
printf("%d\n",f[0].cnt);
return 0;
}

[NC13C]形态形成场/[Gym100430B]Divisible Substrings的更多相关文章

  1. 形态形成场(矩阵乘法优化dp)

    形态形成场(矩阵乘法优化dp) 短信中将会涉及前\(k\)种大写字母,每个大写字母都有一个对应的替换式\(Si\),替换式中只会出现大写字母和数字,比如\(A→BB,B→CC0,C→123\),代表 ...

  2. 牛客挑战赛33 F 淳平的形态形成场(无向图计数,EGF,多项式求逆)

    传送门: 淳平的形态形成场 题解: 把a排序后,直接统计答案恰好为a[i]并不好做,可以统计答案>a[i]的方案数,设为\(f[i]\). 即不存在一个联通块,所有的权值都<=a[i]. ...

  3. HJA的异或值

    HJA的异或值 查看 提交 统计 提问 总时间限制:  20000ms 内存限制:  512000kB 描述 形态形成场(Morphogenetic Field)假说是Rupert Sheldrake ...

  4. 微软2016校园招聘在线笔试第二场 题目1 : Lucky Substrings

    时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 A string s is LUCKY if and only if the number of different ch ...

  5. Kattis之旅——Divisible Subsequences

    Given a sequence of positive integers, count all contiguous subsequences (sometimes called substring ...

  6. [CF百场计划]Codeforces Round #617 (Div. 3)

    A. Array with Odd Sum Description You are given an array \(a\) consisting of \(n\) integers. In one ...

  7. Dynamics CRM 之ADFS 使用 WID 的联合服务器场

    使用 WID 的联合服务器场 默认拓扑 Active Directory 联合身份验证服务 (AD FS) 是联合服务器场,使用 Windows 内部数据库 (WID). 在这种拓扑, AD FS 使 ...

  8. CATransition自定义转场动画

    我们可以通过CATransiton来自定义一些漂亮的转场动画, CATransition继承自CAAnimation, 所以用法跟CAAnimation差不多 先直接上一个代码: #import &q ...

  9. Dynamics CRM 之ADFS 使用 SQL Server 的联合服务器场

    此拓扑用于 Active Directory 联合身份验证服务 (AD FS) 不同于使用 Windows 内部数据库 (WID) 部署拓扑,因为不会将数据复制到每台联合服务器场中的联合身份验证服务器 ...

随机推荐

  1. PHP文本式留言板——php经典实例

    文件结构: index.php 主页和添加页 show.php 查看留言页 ly.db 文本保存页 doAdd.php 添加功能页 doDel.php 删除功能页  index.php <htm ...

  2. 基于bootstrap物资管理系统后台模板——后台

    链接:http://pan.baidu.com/s/1geKwVMN 密码:0utl

  3. 安装 Google BBR 加速VPS网络

    Google BBR就是谷歌公司提出的一个开源TCP拥塞控制的算法.详情可以看这儿:https://lwn.net/Articles/701165.https://blog.sometimesnaiv ...

  4. sicily 1240. Faulty Odometer

    Description You are given a car odometer which displays the miles traveled as an integer. The odomet ...

  5. Minimum Palindromic Factorization(最少回文串分割)

    Minimum Palindromic Factorization(最少回文串分割) 以下内容大部分(可以说除了关于回文树的部分)来自论文A Subquadratic Algorithm for Mi ...

  6. HTML标签学习之路-001

    1.html的注释 <!--这里是注释内容--> <!--代表注释内容的开始 -->代表注释内容结束 注释部分,不会被浏览器输出,只是作为代码的说明,供开发者查阅 2.HTML ...

  7. [ python ] 各种推导式

    各种推导式,主要使用示例演示用法 列表生成式 示例1:求0-9每个数的平方 li = [x*x for x in range(10)] print(li) # 执行结果: # [0, 1, 4, 9, ...

  8. Percona XtraDB Cluster(PXC)-高可用架构设计说明

    Mycat+PXC高可用集群 一.架构图 架构说明: 1.mysql 集群高可用部分: l 针对业务场景选用Percona XtraDB Cluter(PXC)复制集群.两个片集群 PXC-dataN ...

  9. Synergy,一个软件团队质量改进之路之一 --- 规划

    关于质量改进 ISO9001:2000的核心思想是持续改进 ISO关于质量管理有8项原则: 原则一: 以顾客为关注焦点 原则二: 领导作用 原则三: 全员参与 原则四: 过程方法 原则五:管理的系统方 ...

  10. 使用亚马逊云服务器EC2做深度学习(二)配置Jupyter Notebook服务器

    这是<使用亚马逊云服务器EC2做深度学习>系列的第二篇文章. (一)申请竞价实例  (二)配置Jupyter Notebook服务器  (三)配置TensorFlow  (四)配置好的系统 ...