本来想作为水题刷,很快就想出了做法,结果细节实现太差改了好久。。。

根据题意你会发现其实就是求方程 ax+by=k解的个数。

此时 a=f[i],b=f[i+1],而(x,y)就是你要求的数对。

于是你就对斐波那契的每一项进行扩展欧几里得,然后计算个数,注意向上取整!!!

此时你把y转换为最大值应该是一个y≡n+a*t 而a可以为0,所以要加一。

#include<bits/stdc++.h>
using namespace std;
long long f[100];
void exgcd(long long a,long long b,long long &x,long long &y)
{
if(b==0)
{
x=1;y=0;return;
}
exgcd(b,a%b,x,y);
long long tmp=x;x=y;y=tmp-a/b*y;
}
const int mod=1e9+7;
int main()
{
long long k;
scanf("%lld",&k);
f[0]=0;f[1]=1;
for(int i=2;i<=46;++i)
{
f[i]=f[i-1]+f[i-2];
}
long long ans=0;
for(int i=1;i<=45;++i)
{
long long x,y,tmp=0;
exgcd(f[i],f[i+1],x,y);
x=x*k;y=y*k;
x=(x%f[i+1]+f[i+1])%f[i+1];
if(x==0)x=f[i+1];
y=(k-f[i]*x)/f[i+1];
if(y<0)continue;
ans=(ans+(y-1)/f[i]+1)%mod;
}
printf("%lld",ans);
return 0;
}

luogu 11月月赛 斐波那契数列的更多相关文章

  1. 「Luogu 1349」广义斐波那契数列

    更好的阅读体验 Portal Portal1: Luogu Description 广义的斐波那契数列是指形如\(an=p \times a_{n-1}+q \times a_{n-2}\)的数列.今 ...

  2. Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)

    Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...

  3. Luogu 1962 斐波那契数列(矩阵,递推)

    Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n ...

  4. C++扬帆远航——11(斐波那契数列)

    /* * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:Feibo.cpp * 作者:常轩 * 微信公众号:Worldh ...

  5. [Luogu P3986] 斐波那契数列 (逆元)

    题面 传送门:https://www.luogu.org/problemnew/show/P3986 Solution 这是一道很有意思的数论题. 首先,我们可以发现直接枚举a和b会T的起飞. 接下来 ...

  6. hihoCoder挑战赛11 A 随机斐波那契

    算了前三项.....发现是个大水题...   #include<stdio.h> int main() { int n; while (~scanf("%d", &am ...

  7. Luogu P1962 斐波那契数列(矩阵乘法模板)

    传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...

  8. [luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

  9. 纪中23日c组T3 2161. 【2017.7.11普及】围攻 斐波那契数列

    2161. 围攻 (File IO): input:siege.in output:siege.out 时间限制: 1000 ms  空间限制: 262144 KB  具体限制   Goto Prob ...

随机推荐

  1. 详解ASP.NET4 GridView的四种排序样式

    与ASP.NET 的其他Web控件一能够,Gridview控件拥有很多不同的CSS样式属性设置,包括象CssClass,Font字体,ForeColor,BackColor,BackColor, Wi ...

  2. 用Vue来实现图片上传多种方式

    没有业务场景的功能都是耍流氓,那么我们先来模拟一个需要实现的业务场景.假设我们要做一个后台系统添加商品的页面,有一些商品名称.信息等字段,还有需要上传商品轮播图的需求. 我们就以Vue.Element ...

  3. bzoj 1934最小割

    比较显然的最小割的题,增加节点source,sink,对于所有选1的人我们可以(source,i,1),选0的人我们可以(i,sink,1),然后对于好朋友我们可以连接(i,j,1)(j,i,1),然 ...

  4. javascript反混淆之packed混淆(一)

    javascript反混淆之packed混淆(一) 什么是JavaScript反混淆,在理解这个概念前我们先来看下什么是代码混淆,代码混淆,是将计算机程序的代码,转换成一种功能上等价,但是难于阅读和理 ...

  5. html中去掉文本框(input type="text")的边框或只显示下边框

    去掉: <input   type="text"   name="textfield"   style="border:0px;"&g ...

  6. MySQL Table Information

    show tables;                    --显示该数据库里的所有表show columns from 表名;         --显示表字段use information_sc ...

  7. 修改vs17中的cordova模板

    因为visual studio 2017创建的默认cordova-ios的版本自动编译带有swift语言的插件会出现异常,cordova-ios升级到4.3.1,并且配置build.json能解决问题 ...

  8. salt-api起不来:ImportError('No module named wsgiserver2',)

    问题:启动salt-api时没有报错但是没有端口,查看/var/log/salt/api发现如下报错: 解决方法: 下载wsgiserver2文件,放到/usr/lib64/python2.7/sit ...

  9. git clone的

    git clone git@e.coding.net:wudi360/*******.git

  10. java版云笔记(二)

    云笔记 基本的环境搭建好了,今天做些什么呢,第一是链接数据库(即搭建Spring-Batistas环境),第二是登录预注册. 注:这个项目的sql文件,需求文档,需要的html文件,jar包都可以去下 ...