POJ 3171 DP
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 3563 | Accepted: 1205 |
Description
Farmer John has N (1 <= N <= 10,000) cows who are willing to do some cleaning. Because dust falls continuously, the cows require that the farm be continuously cleaned during the workday, which runs from second number M to second number E during the day (0 <= M <= E <= 86,399). Note that the total number of seconds during which cleaning is to take place is E-M+1. During any given second M..E, at least one cow must be cleaning.
Each cow has submitted a job application indicating her willingness to work during a certain interval T1..T2 (where M <= T1 <= T2 <= E) for a certain salary of S (where 0 <= S <= 500,000). Note that a cow who indicated the interval 10..20 would work for 11 seconds, not 10. Farmer John must either accept or reject each individual application; he may NOT ask a cow to work only a fraction of the time it indicated and receive a corresponding fraction of the salary.
Find a schedule in which every second of the workday is covered by at least one cow and which minimizes the total salary that goes to the cows.
Input
Lines 2..N+1: Line i+1 describes cow i's schedule with three space-separated integers: T1, T2, and S.
Output
Sample Input
3 0 4
0 2 3
3 4 2
0 0 1
Sample Output
5
Hint
FJ has three cows, and the barn needs to be cleaned from second 0 to second 4. The first cow is willing to work during seconds 0, 1, and 2 for a total salary of 3, etc.
Farmer John can hire the first two cows.
Source
//容易想到dp但是没想到可以用线段树处理区间最小值,dp[i]表示到达时间i
//时的最小花费,将区间按照右值从小到大排序,然后枚举区间右值,
//dp[r]=min(dp[r],min(dp[l-1~r-1])+w),其中后一项用线段树处理区间最小值。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int maxn=;
const int maxm=;
int n,m,e,minv[maxm*],f[maxm];
struct Lu{
int l,r,w;
Lu(){}
Lu(int a,int b,int c):l(a),r(b),w(c){}
bool operator < (const Lu &p)const{
return r<p.r;
}
}L[maxn];
void pushup(int rt){
minv[rt]=min(minv[rt<<],minv[rt<<|]);
}
void build(int l,int r,int rt){
minv[rt]=inf;
if(l==r) return;
int mid=(l+r)>>;
build(l,mid,rt<<);
build(mid+,r,rt<<|);
pushup(rt);
}
void update(int id,int v,int l,int r,int rt){
if(l==r){
minv[rt]=v;
return;
}
int mid=(l+r)>>;
if(id<=mid) update(id,v,l,mid,rt<<);
else update(id,v,mid+,r,rt<<|);
pushup(rt);
}
int query(int ql,int qr,int l,int r,int rt){
if(ql<=l&&qr>=r)
return minv[rt];
int mid=(l+r)>>,ans=inf;
if(ql<=mid) ans=min(ans,query(ql,qr,l,mid,rt<<));
if(qr>mid) ans=min(ans,query(ql,qr,mid+,r,rt<<|));
return ans;
}
int main()
{
while(scanf("%d%d%d",&n,&m,&e)==){
e-=m; //将区间左移到从0开始
int cnt=;
for(int i=;i<n;i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
if(y<m||x>e) continue; //去掉不可行的区间
x-=m;y-=m;
if(x<) x=;
if(y>e) y=e;
L[cnt++]=Lu(x,y,z);
}
sort(L,L+cnt);
memset(f,inf,sizeof(f));
build(,e,);
for(int i=;i<n;i++){
int tmp=inf;
if(L[i].l==) tmp=L[i].w;
else tmp=query(L[i].l-,L[i].r-,,e,)+L[i].w;
f[L[i].r]=min(f[L[i].r],tmp);
if(f[L[i].r]<inf)
update(L[i].r,f[L[i].r],,e,);
}
if(f[e]>=inf) f[e]=-;
printf("%d\n",f[e]);
}
return ;
}
POJ 3171 DP的更多相关文章
- POJ 3171 Cleaning Shifts(DP+zkw线段树)
[题目链接] http://poj.org/problem?id=3171 [题目大意] 给出一些区间和他们的价值,求覆盖一整条线段的最小代价 [题解] 我们发现对区间右端点排序后有dp[r]=min ...
- POJ 3171.Cleaning Shifts-区间覆盖最小花费-dp+线段树优化(单点更新、区间查询最值)
Cleaning Shifts Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4721 Accepted: 1593 D ...
- POJ 3171 区间最小花费覆盖 (DP+线段树
Cleaning Shifts Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4245 Accepted: 1429 D ...
- POJ 3171 区间覆盖最小值&&线段树优化dp
Cleaning Shifts Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4715 Accepted: 1590 D ...
- hdu 1513 && 1159 poj Palindrome (dp, 滚动数组, LCS)
题目 以前做过的一道题, 今天又加了一种方法 整理了一下..... 题意:给出一个字符串,问要将这个字符串变成回文串要添加最少几个字符. 方法一: 将该字符串与其反转求一次LCS,然后所求就是n减去 ...
- poj 1080 dp如同LCS问题
题目链接:http://poj.org/problem?id=1080 #include<cstdio> #include<cstring> #include<algor ...
- poj 1609 dp
题目链接:http://poj.org/problem?id=1609 #include <cstdio> #include <cstring> #include <io ...
- POJ 1037 DP
题目链接: http://poj.org/problem?id=1037 分析: 很有分量的一道DP题!!! (参考于:http://blog.csdn.net/sj13051180/article/ ...
- Jury Compromise POJ - 1015 dp (标答有误)背包思想
题意:从 n个人里面找到m个人 每个人有两个值 d p 满足在abs(sum(d)-sum(p)) 最小的前提下sum(d)+sum(p)最大 思路:dp[i][j] i个人中 和 ...
随机推荐
- Javascript 初学笔记
变量作用域 自 ES2015 起,JS 引入let 和 const 关键词定义变量的块作用域(Block Scope). var 仅支持全局作用域(Global Scope)和函数作用域(Functi ...
- 关于cisco路由器配置的一些参数
单臂路由设置 Switch(config-if)#no switchport Switch(config)#ip routingSwitch(config)#interface FastEtherne ...
- eos开发实践
一 下载前端代码 git clone https://github.com/baidang201/eos-todo 二 安装nodejs sudo apt-get install python-sof ...
- 关于jsp之间href传参(中文)乱码问题
在A.jsp中有href传值 <a href=\"6.jsp?param="+rs.getString(2)+"\">" 在B.jsp中使 ...
- OpenCV学习笔记——imread、imwrite以及imshow
1.imread Loads an image from a file. 从文件中读取图像. C++: Mat imread(const string& filename, int flags ...
- CSS中px和em属性的特点与区别
详解px和em的特点和区别象素px是我们在定义CSS中经常用到的尺寸大小单位,而em在国外网站中经常被使用,px和em之间究竟有什么区别和特点呢?◆px像素(Pixel),相对长度单位.像素px是相对 ...
- nodejs 中on 和 emit
首先测试用例: var EventEmitter = require('events').EventEmitter var life = new EventEmitter(); // life.on( ...
- jdbc 2.0
1.Statement接口不能接受参数 2.PreparedStatement接口在运行时接受输入参数 3.CallableStatement接口也可以接受运行时输入参数,当想要访问数据库存储过程时使 ...
- vue知识拓展
组件 *组件里面如果要放数据: data必须是函数的形式,函数必须返回一个对象(json),有的时候我们自己创建的组件需要使用到自己的数据,此外组建中也可以放入自己的其他的比如事件之类的 ...
- PAT 甲级 1023 Have Fun with Numbers
https://pintia.cn/problem-sets/994805342720868352/problems/994805478658260992 Notice that the number ...