题目链接:传送门

题目需求:

Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i, N) 1<=i <=N. 这题就是上一篇博客的变形。

题目解析:首先先求出与N互质的个数,即N的欧拉函数值,之后分解出N的因子来,求解方法如下。

证明:

要求有多少个 i 满足gcd(i, N) = d 如果gcd(i, N) = d,则gcd(i/d, N/d) = 1 由于i <= N,所以 i/d <= N/d,转化为求多少个不大于N/d的数与N/d互质,而这就是欧拉函数 所以有phi(N/d)个 i 满足gcd(i, N) = d,所以∑d*phi(N/d)即为答案。

我搜了大部分人的题解都是利用乘性函数做的,思想我附在代码下面,因为已A,我就不用他们那种方法了。

代码:(欧拉函数打表204ms)

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
typedef long long ll;
using namespace std;
ll phi[];
ll f[];
ll sum,n,t,tt,i;
void init()
{
memset(phi,,sizeof(phi));
phi[]=;
for(int i=; i<=; i++)
{
if(!phi[i])
{
for(int j=i; j<=; j=j+i)
{
if(!phi[j]) phi[j]=j;
phi[j]-=phi[j]/i;
}
}
}
}
int main()
{
init();
while(scanf("%I64d",&n)!=EOF)
{
tt=;
for(i=; i*i<n; i++)
{
if(n%i==)
{
f[tt++]=i;
f[tt++]=n/i;
}
}
if(i*i==n)
f[tt++]=i;
sort(f,f+tt);
if(tt==)
{
tt=*n-;
printf("%I64d\n",tt);
continue;
}
t=n;
sum=n;
for(i=; i*i<=t; i++)
{
if(t%i==)
{
sum-=sum/i;
t/=i;
while(t%i==)
t/=i;
}
}
if(t!=)
sum-=sum/t;
sum+=n;
for(i=; i<tt; i++)
{
if(n/f[i]>=)
{
ll temp=n/f[i];
ll cot=temp;
for(ll z=; z*z<=temp; z++)
{
if(temp%z==)
{
t/=z;
cot-=cot/z;
while(temp%z==)
temp/=z;
}
}
if(temp!=) cot-=cot/temp;
sum+=cot*f[i];
continue;
}
sum+=(phi[n/f[i]])*f[i];
}
printf("%I64d\n",sum);
}
return ;
}

下面推导没看懂。。。。。

积性函数:若任取互质的两个数m,n,都有f(m*n) = f(m)*f(n),那么f就是积性函数

容易证明gcd(i,n)是积性函数,即: 如果n = m1*m2 且gcd(i,m1*m2) = gcd(i,m1)*gcd(i,m2).  然后根据具体数学上的结论: 积性函数的和也是积性的,所以如果我们设所求答案是f(n) 则: f(n) = f(m1)*(m2) 其中,m1*m2 = n 且m1,m2互质!

经过因子分解,那种只要求到f(p^k)就可以利用积性把所有结果相乘得到最后答案。

还要一个结论: f(n) = sum(p * phi(n/p))  其中p是n的因子,phi(n/p) 是从1到n有多少个数和n的gcd是p,  这个结论比较好证明的。

所以求f(p^k)转化成求phi(p^i) i =0....k;  而根据公式phi(p^i) = (p-1)*p^(i-1)可以求出,这样整个问题就解决了。

POJ2480:Longge's problem(欧拉函数的应用)的更多相关文章

  1. poj 2480 Longge's problem [ 欧拉函数 ]

    传送门 Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7327   Accepted: 2 ...

  2. POJ 2480 Longge's problem 欧拉函数—————∑gcd(i, N) 1<=i <=N

    Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6383   Accepted: 2043 ...

  3. poj 2480 Longge's problem 欧拉函数+素数打表

    Longge's problem   Description Longge is good at mathematics and he likes to think about hard mathem ...

  4. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  5. Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][ ...

  6. 【bzoj2705】[SDOI2012]Longge的问题 欧拉函数

    题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 输入 一个整数,为N. 输出 ...

  7. BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)

    题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理 ...

  8. [SDOI2012] Longge的问题 - 欧拉函数

    求 \(\sum\limits_{i=1}^{n}gcd(i,n)\) Solution 化简为 \(\sum\limits_{i|n}^{n}φ(\dfrac{n}{i})i\) 筛出欧拉函数暴力求 ...

  9. UVa 10837 A Research Problem 欧拉函数

    题意: 给你一个欧拉函数值 phi(n),问最小的n是多少. phi(n) <= 100000000 , n <= 200000000 解题思路: 对于欧拉函数值可以写成 这里的k有可能是 ...

  10. Bzoj-2705 Longge的问题 欧拉函数

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2705 题意: 求 sigma(gcd(i,n), 1<=i<=n<2^3 ...

随机推荐

  1. 【cf490】D. Chocolate(素数定理)

    http://codeforces.com/contest/490/problem/D 好神的一题,不会做.. 其实就是将所有的质因子找出来,满足: 最终的所有质因子的乘积相等 但是我们只能操作质因子 ...

  2. 【BZOJ】1653: [Usaco2006 Feb]Backward Digit Sums(暴力)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1653 看了题解才会的..T_T 我们直接枚举每一种情况(这里用next_permutation,全排 ...

  3. thinkPHP隐藏url地址栏中的index.php方法

    http://localhost/workSpace/First/index.php/Home/Index/index隐藏上面url中的index.php方法如下: 第一步.删除apache配置文件( ...

  4. ASp.Net控件的生命周期

    服务端事件 页面生命周期 描述 Init Initialization 初始化控件树 LoadViewState Unpack ViewState 从ViewState里提取出状态信息 LoadCon ...

  5. UnboundLocalError: local variable 'merchantCode' referenced before assignment

    问题描述:变量赋值前未定义 定位原因:变量没有结果返回,导致赋值失败

  6. Intent讲解

    什么是Intent? Intent是一个消息传递对象,可以使用它来启动其它应用组件.Intent使组件之间通信更加便利,主要用于以下三点: 启动Activity: 可以将intent作为参数调用Con ...

  7. jquery remove() detach() empty()三种方法的区别

    remove方法把事件删除掉了,数据并没有删除 detach方法保存了事件和数据 empty方法保留了元素本身,移除子节点,删除内容 举例: <!DOCTYPE html><html ...

  8. Windows 2012 Server评估版本安装问题处理

    由于工作需要,在微软官方网站下载了一个Windows2012评估版本,地址:http://technet.microsoft.com/zh-cn/evalcenter/hh670538.aspx 在通 ...

  9. HDFS 常用Shell命令

    HDFS Shell命令 概述 HDFS Shell命令允许使用命令行在HDFS存储中进行文件夹和文件操作. 如文件夹的增删改查.文件的增删改查等. 开始练习hadoop时,打开Linux之后要用 s ...

  10. 任务调度quartz整理

    一张图,了解quartz运行机制: 此图表示:Scheduler是容器,Trigger是多个触发器,jobDetail是多个任务,Calendar是多个日历. jobDetail任务,需要指定类实现J ...